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Abstract

Deep neural networks (DNNs) are very effective for multichan-
nel speech enhancement with fixed array geometries. However,
it is not trivial to use DNNs for ad-hoc arrays with unknown or-
der and placement of microphones. We propose a novel triple-
path network for ad-hoc array processing in the time domain.
The key idea in the network design is to divide the overall
processing into spatial processing and temporal processing and
use self-attention for spatial processing. Using self-attention
for spatial processing makes the network invariant to the order
and the number of microphones. The temporal processing is
done independently for all channels using a recently proposed
dual-path attentive recurrent network. The proposed network is
a multiple-input multiple-output architecture that can simulta-
neously enhance signals at all microphones. Experimental re-
sults demonstrate the excellent performance of the proposed
approach. Further, we present analysis to demonstrate the ef-
fectiveness of the proposed network in utilizing multichannel
information even from microphones at far locations.

Index Terms: multi-channel, time-domain, MIMO, self-
attention, ad-hoc array

1. Introduction

Multi-channel speech enhancement is concerned with improv-
ing the intelligibility and quality of noisy speech by utilizing
signals from microphone arrays. Traditional approaches use
linear spatial filters in a filter-and-sum process designed to pre-
serve signals of the target source (e.g., constrained to be undis-
torted) and attenuate signals from interference (e.g. minimize
noise variance), the latter of which are often separated from
the target source in the spatial domain [1]. Some of these ap-
proaches leverage spatial correlations of speech and noise to
determine filter coefficients, and hence, are convenient to use
with unknown array geometries [2].

Supervised speech enhancement using deep neural net-
works has achieved remarkable success and popularity in the
last few years [3]. On the multi-channel front, DNNs have been
extensively studied with fixed array geometries [4, 5, 6, 7, 8,
9, 10, 11, 12, 13]. However, neural-network based speech en-
hancement with ad-hoc arrays, where microphone geometries
and distributions might not be known, has not received much
attention and remains little explored. Ad-hoc array processing
offers considerable flexibility compared to microphone arrays
with fixed geometries and can play a crucial role in enabling
audio and speech applications in the real world. For example,
it is amenable to larger apertures in the context of wearables
as they are not restricted to the size of small wearable devices.
Moreover, methods developed for ad-hoc array processing can
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be easier to use, adapt, and transfer in different situations, as by
design these methods are expected to work in situations where
microphone numbers and distributions might not be known.

However, ad-hoc array processing using deep neural net-
works remains a challenging problem. First, it requires a net-
work to be able to process a multi-channel signal with an un-
known number of microphones at random locations and in any
order. In other words, the network should be invariant to the
number, geometry and the order of microphones. Second, dif-
ferent microphones can be asynchronous. A systematic ap-
proach to solve the first problem is designing networks with
processing blocks that are number and permutation invariant,
such as global pooling and self-attention [14]. The second
problem can be solved by using correlation-based approaches
[15, 16, 17].

Some recent works have investigated DNNs for ad-hoc ar-
ray processing [18, 19, 11, 20, 21, 22]. Luo et al. [18] proposed
a novel transform-average-concatenate module to deal with un-
known number and order, and graph neural networks were in-
vestigated for distributed arrays by Tzirakis et al. [11]. Wang
et al. [23] proposed a spatio-temporal network where a recur-
rent network was used for temporal modeling and self-attention
was used for spatial modeling. The output corresponding to the
reference microphone was obtained by using a global pooling
layer in the end. Deep ad-hoc beamforming proposed in [22]
utilizes a two-stage approach: first select the top k£ microphones
and then use the selected k signals for k-microphone speech
enhancement in the second stage. Furnon et al. [20] pro-
posed a DNN-based two-stage approach to distributed multi-
channel Weiner filtering [24], where a single node DNN is used
for node-specific enhancement followed by a multi-node DNN
for global enhancement.

In this paper, we propose a triple-path network, TADRN:
Triple-Attentive Dual-Recurrent Network, for ad-hoc array pro-
cessing in the time domain. The key idea in the TADRN design
is to divide the overall processing into spatial processing and
temporal processing and use self-attention for spatial process-
ing. Using self-attention for spatial processing makes the net-
work invariant to the order and the number of microphones. The
spatial processing is followed by a dual-path attentive recur-
rent network (ARN), a recurrent network augmented with self-
attention [25, 26], for temporal processing. The temporal mod-
eling is performed independently for all channels, by first divid-
ing a signal into smaller chunks and then using separate ARNs
to process intra-chunks and inter-chunks data. The intra-chunk
processing enables local learning whereas inter-chunk process-
ing helps capture global dependencies. Thus, the TADRN be-
comes a triple-path attention framework: operating on channels
(inter-channel), within chunks of audio (intra-chunk) and across
the chunks (inter-chunks). Moreover, the intra-chunk and inter-
chunks learning are aided by recurrent architectures.
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Figure 1: The proposed TADRN architecture for ad-hoc array
multichannel speech enhancement.

The TADRN design is similar to a recently proposed triple-
path attentive recurrent network (TPARN) for fixed array pro-
cessing [12]. However, there are two key differences. First,
TADRN uses self-attention across channels whereas TPARN
uses ARN. While theoretically, TPARN and TADRN are both
capable of handling an unknown number of microphones, the
use of self-attention across channels makes TADRN order-
invariant, and hence, more suitable for ad-hoc array processing.
Second, the processing order of underlying blocks, intra-chunk,
inter-chunk, and inter-channel blocks, is different in TADRN,
determined based on empirical observations.

TADRN is a multiple-input and multiple-output (MIMO)
architecture that can simultaneously enhance signals from all
microphones. Our empirical evaluations shows that the pro-
posed TADRN approach can outperform prior methods for
speech enhancement using ad-hoc arrays. Moreover, we ana-
lyze its behavior and attempt to provide important insights into
the method. More specifically, we show that TADRN can im-
prove enhancement by leveraging additional randomly placed
microphones, even at locations far from the source. Addition-
ally, large improvements in objective scores are observed when
poorly placed microphones (far from source) in the scene are
complemented with more effective microphone positions, such
as those closer to a target source.

2. Problem Definition
A multi-channel noisy signal X = [x1,...,zp] € RPN with
N samples and P microphones is modeled as
xp(n) = yp(n) + 2p(n)
= hp(n) * s(n) + zp(n)

1
= gpn) » 3(n) + [(hy — ) (n) % s(n) + 2y (m)]

= dp(n) + up(n)
wherep = 1,2...Pandn = 0,1,...N — 1. y, and 2, re-

spectively represent the reverberant speech and noise received at
pt" microphone, and s is the target speech at the sound source.
h,, is the room-impulse-response (RIR) from the target source
to the p!™ microphone, and g, is the direct-path impulse re-
sponse accounting for the free-field propagation of the sound.
d,, is the direct-path signal from the speech source, and u,
denotes the overall interference in this paper, which includes
the background noise and the reverberation of the target speech.
The goal is to get a close estimate, d.., of the direct-path signal
in the predefined reference channel r, d,..

For a fixed array case, the number of microphones (P) and
the array geometry (e.g., a circular array with a fixed radius),
is known beforehand and remains unchanged. However, for an
ad-hoc array, the microphones can be randomly distributed in
the environment. Neither the number nor the relative locations
of the microphones can be assumed to be known a priori.

3. Triple-attentive Dual-recurrent Network

The full block diagram of TADRN is shown in Fig. 1. First,
the multi-channel input signal X is converted into sequential
frames using a frame size of L samples and a frame shift of

near, earrange, [Inter-channel|, [Rearrange|, [Intra-chunk Rearrange Inter-chunk earrange]
Dims Attention Dims ARN Dims ARN Dims

Layer Attenuon
i Norm II Module
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Figure 3: (a) RNN block, (b) Attention block, (c) Feedforward
block.

K samples, leading to 3D tensor representation of the signal,
T = [X1,..., X7] € RPXT*E where T is the number of
frames. The consecutive frames are further grouped into chunks
with a chunk size of R and chunk shift of S forming a 4D tensor
T = [T1,...,Tc] € RFPXCXEXL where C is the number of
chunks.

The audio frames are first encoded to D-dimensional repre-
sentations using a linear layer, leading to E € RFPXCXRXD 54
outputs from the linear layer. E is then processed using a stack
of four TADRN blocks. Let B{"? and B{“* denote the input
and output of the i*" block, respectively. B = E, B¢ e
RPXCXRXD, and Binp _ [E,B(fut, o, B?utl] c RPxCxin-D
for: > 1.

The complete architecture of the TADRN block is shown in
Fig. 2. It consists of an optional linear layer followed by inter-
channel attention, intra-chunk ARN, and inter-chunk ARN. The
linear layer is used for ¢ > 1 to project a feature of size ¢ - D
to size D. The inter-channel attention comprises an attention
block and a feedforward block, and the intera-chunk and inter-
chunk ARNSs comprise an RNN block, an attention block, and a
feedforward block.

The inputs to the inter-channel attention are first rearranged
to tensors of shape C'- R x P x D. These are then processed by
treating the first, second, and third dimension respectively as the
batch, sequence, and feature dimension. As a result, attention
is applied across channels for spatial modeling. Similarly, the
inputs to the intra-chunk ARN are reshaped to P-C x R x D to
treat frames within a chunk as a sequence for the local temporal
modeling, and the inputs to the inter-chunk ARN are reshaped
to shape P - R x C x D to treat different chunks as a sequence
for learning global temporal characteristics. Finally, the output
from the inter-chunk ARN is rearranged to the original shape of
PxCxRxD.

The structure of the RNN block, the attention block, and the
feedforward block in ARN is shown in Fig. 3. The inputs to all
blocks are first split into two streams using two separate layer
normalizations. The first stream in the attention block is used as
query (Q) and the second stream is used as key (K) and value
(V) for the attention module. The outputs of the attention mod-
ule are added to @ to form a residual connection. Additional
details of the attention module can be be found in [12].

The first stream in the RNN block is processed using a RNN
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with a hidden size of 2D. It is then concatenated with the sec-
ond stream, and then projected to a size of D using a linear
layer. The first stream of the feedforward block is projected to a
size of 4D using a linear layer with the GELU nonlinearity and
dropout, projected again to the size of D using another linear
layer, and then added to the second stream to form a residual
connection.

4. Experiments
4.1. Datasets

We create an ad-hoc array dataset using speech and noises from
the DNS challenge 2020 corpus’ [27]. We select speakers with
one chapter and randomly split 90% of speakers for training,
5% for validation, and 5% for evaluation. After this, for each
utterance a random chunk of a randomly sampled length with
an activity threshold (from script in [27]) greater than 0.6 is
extracted. The length of utterances are sampled from [3, 6] sec-
onds for training and [3, 10] seconds for test and validation.
This results in a total of 53k utterances for training, 2.6k for
validation, and 3.3k for test. Next, all the noises from the DNS
corpus are randomly divided into training, validation and test
noises in a proportion similar to that used for speech utterances.

The algorithm to generate spatialized multichannel ad-hoc
array data from DNS speech and noises is given in Algorithm
1. We sample a room size and then sample 6 locations inside
the room for microphones, one location for the speech source
and 5 — 10 locations for noises. All the locations are sam-
pled at least 0.5 m away from walls. We simulate the room-
impulse-responses (RIRs) from each source location to all the
microphone locations, and then convolve them with the speech
and noise signals. Finally, the convolved speech and noises are
added together using a random SNR value to create ad-hoc ar-
ray multichannel noisy data. The SNR is calculated using total
speech and noise energy at all microphones. In this case, the
use of random locations for microphones is creating an ad-hoc
array scenario. We use Pyroomacoustics [28] which uses a hy-
brid approach where the image method with order 6 is used to
model early reflections and ray-tracing is used to model the late
reverberation.

4.2. Experimental settings

All the utterances are resampled to 16 kHz. We break the ut-
terances into frames using L = 16 and K = 8. We use
R = 126 and S = 63 to group frames into chunks. TADRN
uses 4 blocks with D = 128 inside ARN. For the RNN in the
ARN, we use bidirectional long short-term memory networks
(BLSTMs) with the hidden size of D in each direction. The
dropout rate in the feedforward blocks of ARN is set to 5%.
A phase constrained magnitude (PCM) loss over all channels
is used for training [12, 29]. All the models are trained for
100 epochs on 4-second long utterances with a batch size of 8.
For utterances longer than 4 seconds, we dynamically extract a
random chunk of 4 seconds during training.

The automatic mixed precision training is utilized for effi-
cient training [30]. The learning rate is initialized with 0.0004
and is dynamically scaled to half if the best validation score
does not improve in five consecutive epochs. The model with
the best validation score is used for evaluation.

All of the models are trained on microphone arrays with

"https://github.com/microsoft/DNS-Challenge/
blob/master/LICENSE

Algorithm 1 Ad-hoc array dataset spatialization process.

for split in {train, test, validation } do
for speech utterances in split do

¢ Draw room length and width from [5,10] m, and height from
[3, 4] m;

¢ Draw 6 microphone locations inside the room
¢ Draw 1 speech source location inside the room;
¢ Draw N, s, number of noise sources, from [5, 10]

¢ Draw N, 5 noise locations inside the room

Sample T60 uniformly from [0.2, 1.3] seconds

Generate RIRs corresponding to speech source location and
Ny, s noise locations for all microphone locations

¢ Draw N, noise utterances from noises in split

* Propagate speech and noise signals to all mics by convolving
with corresponding RIRs

e Draw a value snr from [-10, 10] dB, and add speech and
noises at each mic using a scale so that the averaged SNR
across all the microphone locations is snr;

end for
end for

2,4, or 6 channels, and evaluated on arrays with 1 — 6 chan-
nels, where 1, 3, and 5 are untrained numbers of microphones.
During training, we first randomly sample p, the number of mi-
crophones from {2, 4,6}, and then create a batch of training
examples with p microphones. This is done to avoid redundant
computations.

We compare TADRN with a recently proposed fiter-and-
sum network with transform average and concatenate module
(FasNet-TAC) for ad-hoc array processing [18]. We also com-
pare TADRN with three fixed-array baseline models: dense
convolutional recurrent network (DCRN) [8], FasNet-TAC
[18], and channel-attention Dense UNet (CA-DUNet) [9].

The models are compared using three enhancement objec-
tive metrics: short-time objective intelligibility (STOI) [31],
perceptual evaluation of speech quality (PESQ) [32], and scale-
invariant signal-to-distortion ratio (SI-SDR) for signals from the
first microphone channel. Note that the numbering of the mi-
crophone channels are randomly assigned. STOI is reported in
percentage.

Table 1: TADRN comparison with an ad-hoc array baseline
model.

|[ Mix. JTch]2ch]3ch 4ch]5ch] ()ch‘

FASNET-TAC [18] 6.1]30]-15
v S R PR P
701 |[FASNETTAC [I8][[ (78 0[810[82.4]83.3]840[84.5
TADRN 8 |83.3[87.3/88.9/89.9/90.590.9
FASNET-TAC [18] 1.81(1.94(2.02]2.07|2.11{2.14
‘ PESQ H TADRN H 140 ‘212‘238‘251‘258‘264‘268‘

4.3. Experimental results
4.3.1. Comparison with Prior Works

First, we compare TADRN with the baseline FasNet-TAC. Re-
sults with different numbers of microphones are given in Table
1. We observe that the performance of both the models im-
proves gradually as the number of microphones are increased.
However, TADRN results are consistently and significantly bet-
ter than FasNet-TAC for all the cases. For instance, for the 6-
channel case, TADRN outperforms FasNet-TAC by 5.4 dB in
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Figure 4: TADRN performance with different number of micro-
phones. a) Microphones sorted by increasing distance from the
source, b) Microphones sorted by decreasing distance from the
source.
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Figure 5: An illustration of the gap reduction in the objec-
tive scores at different microphones after MIMO processing of
TADRN.

SI-SDR, 6.4% in STOI, and 0.54 in PESQ. Moreover, single-
channel TADRN is able to outperform 3-channel FasNet-TAC.

4.3.2. Analysis of Impact of Microphone Locations

Results in Table 1 indicate that TADRN can improve perfor-
mance by adding more microphones at random locations inside
a room. Because the microphones in an ad-hoc array can be
well separated in space, the SNR at each microphone location
could be significantly different. For example, SNR at locations
closer to the speech source is generally higher than locations
further away because of the decay of the sound energy. In order
to understand how the local SNR of each microphone affects the
array performance, we conduct two experiments. First, we sort
microphones in the increasing order of distance from the source
to simulate decreasing order of SNR (on average), and evalu-
ate the signal improvement in the channel of the microphone
closest to the source. This is visualized in Fig. 4 (a). We ob-
serve that TADRN gradually improves performance when more

Table 2: TADRN Performance on fixed-array dataset

\ [ TestMetric  [SI-SDR|STOI[PESQ]
[ Type | Unprocessed | -7.6 [63.8 ] 1.38 |
fixed | CA-DUNet [9] 2.7 82.1 | 1.93
fixed DCRN [8] 4.6 90.1 | 2.57
fixed |FasNet-TAC [18]| 4.7 | 86.5 | 2.26

fixed | TPARN [12] ‘ 8.4 ‘91.9‘ 2.75 ‘

ad-hoc TADRN 5.6 |88.1| 241

microphones are added at further distance, although the perfor-
mance tends to saturate after four to five microphones. Sec-
ond, in Fig. 4 (b), we analyze TADRN’s behavior for a reverse
case where arrays are sorted in the order of decreasing distance
from the source. For this case, TADRN improves performance
significantly and consistently with increasing number of micro-
phones, as newly added microphones are closer to the source.
These results suggest that while TADRN naturally relies
more on high SNR microphone channels, it can also leverage all
other lower SNR channels to further improve the performance.

4.3.3. Analysis of MIMO

TADRN is a MIMO architecture that can enhance signals from
all microphones simultaneously. We analyze performance im-
provements for all microphones in an array sorted in the order
of increasing distance from the source. This is visualized in Fig.
5, and an interesting behavior can be observed in the plot. The
objective scores for unprocessed signals differ a lot at different
microphones in an array. However, for enhanced signals, the
difference between objective scores becomes very small. For
instance, for the unprocessed case, the difference between the
1°¢ and the 6" microphone is close to 9 dB for SI-SDR and
13% for STOI. For the enhanced case, however, the difference
is less than 2 dB for SI-SDR and close to 1% for STOI. We
also note that the difference in PESQ is decreased by a rela-
tively smaller amount. We think that this may be because there
is only a small difference in PESQ for the unprocessed case.
This analysis illustrates that in the proposed MIMO learning
framework, poorly placed microphones at far locations from the
source are benefitting the most by utilizing better signals from
microphones at closer locations.

4.3.4. Application to Fixed-Geometry Arrays

Finally, we evaluate a TADRN trained on ad-hoc arrays for a 4-
channel circular array dataset from the DNS corpus [12]. Also,
we compare with existing models trained specifically for a 4-
channel circular array. Objective scores are given in Table 2.
We can see that even though TADRN is far from TPARN, it is
able to outperform two fixed-array baselines, CA-DUNet and
FasNet-TAC. It is better than DCRN in SI-SDR but worse in
STOI and PESQ.

5. Conclusions

We have proposed a triple-attentive dual-recurrent network for
ad-hoc array multichannel speech enhancement in the time-
domain. TADRN is designed by extending a single-channel
dual-path model to a multichannel model by adding a third-path
along the spatial dimension. A simple but effective attention
along the channels is proposed to make TADRN suitable for ad-
hoc array processing, i.e., the number of microphones and order
invariant processing. Experimental results have established that
TADRN is highly effective in utilizing multichannel informa-
tion even from the microphones at far locations.
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