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Abstract—In recent years, supervised approaches using deep
neural networks (DNNs) have become the mainstream for speech
enhancement. It has been established that DNNs generalize well to
untrained noises and speakers if trained using a large number of
noises and speakers. However, we find that DNNs fail to generalize
to new speech corpora in low signal-to-noise ratio (SNR) condi-
tions. In this work, we establish that the lack of generalization
is mainly due to the channel mismatch, i.e. different recording
conditions between the trained and untrained corpus. Additionally,
we observe that traditional channel normalization techniques are
not effective in improving cross-corpus generalization. Further,
we evaluate publicly available datasets that are promising for
generalization. We find one particular corpus to be significantly
better than others. Finally, we find that using a smaller frame
shift in short-time processing of speech can significantly improve
cross-corpus generalization. The proposed techniques to address
cross-corpus generalization include channel normalization, better
training corpus, and smaller frame shift in short-time Fourier
transform (STFT). These techniques together improve the objective
intelligibility and quality scores on untrained corpora significantly.

Index Terms—Speech enhancement, channel generalization,
deep learning, cross-corpus generalization, robust enhancement.

I. INTRODUCTION

S PEECH signal in a real-world environment is degraded by
background noise. A degraded speech signal can severely

degrade the performance of speech-based applications such as
automatic speech recognition (ASR), speaker identification, and
hearing aids. Speech enhancement is concerned with improv-
ing the intelligibility and quality of a speech signal degraded
by additive noise, and commonly used as preprocessors in
speech-based applications to improve their performance in noisy
environments.

In real-world environments, speech signals are varied or dis-
torted [1]. Sources of variations include background noise, room
reverberation, speaker, language, accent, and communication
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channel. Ideally a speech enhancement algorithm should work
well in different acoustic conditions. However, developing a
general algorithm that works in all conditions remains a technical
challenge.

Traditional approaches to speech enhancement include spec-
tral subtraction [2], Wiener filtering [3], statistical model-based
methods [4], and nonnegative matrix factorization [5]. These
approaches work well for stationary noises but have difficulty
in handling nonstationary noises or a large number of speak-
ers. In recent years, deep learning-based approaches have be-
come the mainstream for speech enhancement (see [6] for an
overview). Among the most popular deep learning approaches
are fully-connected networks [7], [8], recurrent neural net-
works (RNNs) [9], [10] and convolutional neural networks
(CNNs) [11]–[13].

In [14], Chen et al. demonstrated that fully connected feed-
forward networks trained for a single speaker, using a large
number of noises, can generalize to untrained noises. However,
such a network has difficulty generalizing to both of untrained
speakers and noises, when trained using a large number of
noises and speakers [10]. In [10], a RNN with long short-term
memory (LSTM) is employed to develop a speaker- and noise-
independent model for speech enhancement. This was achieved
by training a four-layered RNN model using utterances from 77
speakers mixed with 10000 different noises.

In the last few years, speech enhancement research has aimed
to improve the performance of speaker-and noise-independent
models. In [12], the authors propose a CNN with gated and
dilated convolutions for magnitude-spectrum enhancement. A
recent trend is the enhancement of phase, obtaining better
speech enhancement than the magnitude-only enhancement ap-
proaches. The two popular approaches are complex-spectrogram
enhancement [15]–[19] and time-domain enhancement [13],
[20]–[24].

The common practice in all the DNN based approaches is that
a DNN is trained using utterances of different speakers from a
single corpus and evaluated on untrained speakers from the same
corpus. However, we find that when evaluated on utterances from
untrained corpora, DNN performance may degrade significantly.
This behavior has not been revealed and analyzed before. To be
suitable for real-world applications, speech enhancement has to
work on noisy utterances recorded in an unknown fashion, i.e.
on any untrained corpus.

In this study, we perform an experimental study to understand
cross-corpus generalization of DNNs. Our key observation is
that the generalization gap is severe at low SNR conditions and

2329-9290 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 07,2020 at 19:33:07 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3352-7453
https://orcid.org/0000-0001-8195-6319
mailto:pandey.99@osu.edu
mailto:dwang@cse.ohio-state.edu


2490 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

is mainly due to the channel mismatch between different speech
corpora. We examine the effectiveness of traditional channel
normalization techniques for speech enhancement in low SNR
conditions.

The general behavior of traditional channel normalization
methods used in ASR or speaker identification systems, such
as cepstral mean subtraction (CMS) [25], [26] or RASTA filter-
ing [27], [28], is unknown for supervised speech enhancement.
In supervised approaches to speech enhancement, a noisy utter-
ance is generated by adding a noise segment to a clean speech
utterance. It is highly unlikely that the channels of clean speech
and noise will be similar. This creates a channel situation that
is different from those in ASR and speaker recognition where
the noise channel is not a main concern. In other words, a
noisy utterance captures two kinds of channel effects, one for
speech and the other for noise. This implies that the predicted
channel from the noisy utterance may be inaccurate in noise
dominant segments. To verify this analysis, we have evaluated
two different channel normalization methods, mean subtraction
and RASTA filtering in the log-spectrum domain. We choose the
log-spectrum domain because most of the DNN based speech
enhancement systems use either spectrum or log-spectrum as
the input features. We observe improved enhancement using
channel normalization, however, the improvements are indeed
limited in low SNR conditions.

Further, we evaluate different corpora that are promising for
cross-corpus generalization. A corpus that is recorded using
many microphones or recorded in different acoustic conditions
would be promising as it will expose the underlying DNN model
to different channels. LibriSpeech [29] and VoxCeleb2 [30] are
two such corpora. The utterances in LibriSpeech are extracted
from audiobooks that are read by different volunteers across
the globe. This implies that the utterances recorded by different
volunteers have different channel characteristics. VoxCeleb2
utterances are extracted from the audios in YouTube videos
and hence are recorded in different conditions and using dif-
ferent devices. We find LibriSpeech to be significantly better
than VoxCeleb2 and WSJ [31], the latter commonly used in
speaker-independent enhancement models.

Additionally, we investigate the use of smaller frame shifts in
STFT, as smaller shifts may lead to better cross-corpus gener-
alization because of the averaging effect in the overlap-and-add
stage of inverse STFT. This turns out to be a very simple and
effective technique for improving cross-corpus generalization.

Finally, we combine all the proposed techniques; channel
normalization, better training corpus, and smaller frame shift.
This combination substantially improves objective intelligibil-
ity and quality scores. The short-time objective intelligibility
(STOI) [32] and the perceptual evaluation of speech quality
(PESQ) [33] scores at −5 dB SNR for babble noise are im-
proved by 13.9 percentage points and 0.59 respectively for the
utterances of a male speaker in the challenging IEEE corpus [34].

To our knowledge, this is the first systematic study on cross-
corpus generalization in DNN based speech enhancement. The
results of this study, we believe, represent a major step towards
robust speech enhancement in real-world conditions. The rest of
the paper is organized as follows. In Section II, we describe the

speech enhancement framework used in this study. Section III
explains corpus channel. Section IV illustrates the corpus fitting
problem in speech enhancement. In Section V, we describe
the techniques explored in this study to improve cross-corpus
generalization. Experimental settings are given in Section VI
and Section VII presents the results. Concluding remarks are
given in Section VIII.

II. DEEP LEARNING BASED SPEECH ENHANCEMENT

A. Problem Definition

Given a clean speech signal x and a noise signal n, the noisy
speech signal is formed by the additive mixing as the following

y = x+ n, (1)

where {y, x, n} ∈ RM×1. M represents the number of samples
in the signal. The goal of a speech enhancement algorithm is to
get a close estimate, x̂, of x given y.

B. Data Generation

Given a speech corpus C containing Ntr training
utterances {x1

tr,x
2
tr, . . .,x

Ntr
tr } and Nte test utterances

{x1
te,x

2
te, . . .,x

Nte
te }, we denote Ctr as the set of training ut-

terances and Cte as the set of test utterances in corpus C.
The noisy utterances are generated by artificially adding

noises to the utterances in Ctr and Cte.

yi
tr = xi

tr + ni
tr, i = 1, 2, . . .N tr (2)

yj
te = xj

te + nj
te, j = 1, 2, . . .N te. (3)

In general, to assess noise generalization, ni
tr and nj

te are set to
be either different noises or different segments of nonstationary
noises. Similarly, to assess speaker generalization, speakers in
Ctr and Cte are set to be different.

In this work, we evaluate DNN based speech enhancement
models for cross-corpus generalization. We train different mod-
els on corpora {C1

tr, C2
tr,..., CPtr

tr } but evaluate them on utter-

ances from untrained corpora {Ĉ
1

te, Ĉ
2

te,..., Ĉ
Pte

te }. Ptr and Pte

denote the numbers of training and test corpora respectively.

C. Feature Extraction and Training Targets

The pairs {x, y, n} are transformed to the time-frequency
(T-F) representation using STFT.

X = STFT(x) (4)

Y = STFT(y) (5)

N = STFT(n), (6)

where {X , Y , N} ∈ CT×F , and T and F represent the number
of frames and number of frequency bins. In this study, we use
either STFT magnitude |Y | or logarithm of STFT magnitude,
log|Y |, as the input feature.

There are many training targets studied in the literature such
as the ideal ratio mask (IRM) [35], STFT magnitude [8], and
spectral magnitude mask (SMM) [35]. We use the IRM in this
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study, defined as:

IRM(t, f) =

√
|X(t, f)|2

|X(t, f)|2 + |N(t, f)|2 (7)

whereX(t, f),N(t, f) and IRM(t, f), respectively, denote the
values of X , N and IRM at the corresponding T-F unit.

D. Model Architecture

We use a 4-layer bidirectional LSTM (BLSTM) network with
512 hidden units in each direction. One fully-connected layer
with 512 units is used before the BLSTM, which is followed by
a fully-connected layer at the output with sigmoidal nonlinearity.

E. Loss Function

The BLSTM network takes as input the feature, |Y | or log|Y |,
and outputs the estimated IRM, RM . A mean squared error
(MSE) loss is used between IRM and RM . The utterance
level MSE loss is given below.

L =
1

TF

T∑
t=0

F∑
f=0

[IRM(t, f)−RM(t, f)]2 (8)

F. Time Domain Reconstruction

The trained model is used for predicting the IRM of noisy
utterances in the test set. RM is multiplied to the noisy STFT
magnitude, |Y |, to obtain the enhanced STFT magnitude, |X̂|.

|X̂| = |Y | ⊗RM , (9)

where ⊗ denotes element-wise multiplication.
The estimated STFT magnitude is combined with the noisy

STFT phase to obtain the estimated STFT.

X̂ = |X̂| ⊗ ej∠Y , (10)

where ∠Y represents the noisy phase. Finally, inverse STFT is
used to obtain the enhanced waveform.

x̂ = ISTFT(X̂) (11)

III. CORPUS CHANNEL

A speech corpus generally contains different utterances spo-
ken by many speakers. The utterances are recorded in a con-
trolled environment so that the recording is clean and suitable to
be used for speech-based applications. The different controlled
environments used for different corpora may lead to different
stationary components in the utterances. For example, if record-
ing microphones are different, a sentence spoken by the same
person can be very different in quality. We refer to the stationary
component of a corpus as the corpus channel.

An algorithm developed and shown to be effective for one
corpus may not work when evaluated on a corpus recorded
in a different condition. To illustrate this, Fig. 1 plots the
log-spectrum of an utterance from the TIMIT corpus [36] that
is convolved with two different microphone impulse response

Fig. 1. Differences in the energy distribution of a spectrum convolved using
different MIR functions. The frequency responses of MIRs are shown in the top
row.

(MIR) functions.1 We can observe that the energy patterns in
the two spectra are very different. The left spectrum has higher
energy around 100th frequency bin and lower energy around the
0th bin compared to the right spectrum. This type of difference
in distribution may cause an algorithm to degrade on untrained
corpora. A stationary channel can be defined as a linear- and
time-invariant filter given in the following equation,

x = s ∗ h =

K−1∑
k=0

s[n− k] · h[k], (12)

where ∗ denotes the convolution operator, x and s are discrete
signals indexed by n, and h is a digital filter with K taps.
When the underlying signal, s, is a time-varying speech signal,
Equation 12 can be transformed into the following form using
STFT.

X(t, f) = S(t, f) ·H(f), (13)

where H is the time-invariant but frequency-dependent gain
introduced by the channel. Note that H(f) does not contain any
time index implying the stationarity of the channel. Taking the
logarithm of complex magnitude in both sides of Equation 13,
we get

log|X(t, f)| = log|S(t, f)|+ log|H(f)|. (14)

A straightforward method to remove stationary channel from
a speech signal is log-spectral mean subtraction (LSMS). In
this method, the long-term average of a log-spectrum is sub-
tracted from the log-spectrum to obtain a channel removed
log-spectrum. Taking the average over time in Equation 14, we
get

1

T
·
∑
t

log|X(t, f)| = 1

T
·
∑
t

log|S(t, f)|+ log|H(f)|
(15)

1The two MIRs are obtained from [Online]. Available: https://www.
audiothing.net/impulses/vintage-mics/
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Fig. 2. The estimated spectral magnitudes of the channels of three speech
corpora.

Now, we define the channel of a corpus, V , using the following
equation.

log|V (f)| =
∑Ntr

i=1

∑T
t=1 log|Xi

tr(t, f)|
Ntr · T

=

∑Ntr

i=1

∑t=T
t=1 [log|Si

tr(t, f)|+ log|H(f)|]
Ntr · T

= log|S̄(f)|+ log|H(f)|

(16)

Thus the defined corpus channel consists of two components,
where H corresponds to the recording channel and S̄ corre-
sponds to the log-inverse of the average of log-spectrum over the
corpus. It is important to note that channel differences between
corpora are primarily caused by H , as the long-term average
speech spectrum is similar across different dialects of the same
language and even different languages [37].

Further subtracting Equation 16 from Equation 14, we get

log|X(t, f)| − log|V (f)| = log|S(t, f)| − log|S̄(f)|. (17)

The above equation says that removing the defined corpus chan-
nel from an utterance of a corpus gives a normalized utterance
with both channel and speech mean effects removed.

We will use Equation 16 to estimate the spectral magnitudes
of the corpus channel of three popular corpora utilized for speech
enhancement; WSJ SI-84, TIMIT, and IEEE [34]. A frame of
20 ms with a shift of 10 ms is used for STFT computation.
The estimates for the channels are plotted in Fig. 2. We can
observe that the channels are quite different from each other.
Even though the peaks occur at nearby frequencies, the decay
rates are much different. The decay rate is fastest for IEEE and
slowest for TIMIT. TIMIT and WSJ exhibit 2 peaks whereas
IEEE shows only one peak.

IV. CORPUS FITTING

In this section, we demonstrate that models trained on one
corpus fail to generalize to untrained corpora. Further, we show

TABLE I
STOI AND PESQ COMPARISONS BETWEEN DIFFERENT TEST CORPORA FOR

FOUR DEEP LEARNING BASED SPEECH ENHANCEMENT METHODS

that the corpus channel is one of the factors that reduce the
performance on untrained corpora.

We evaluate three different types of models; an IRM based
BLSTM model described in Section II, a complex-spectrum
based model proposed in [38] and two time-domain models
proposed in [13], [24]. The models are trained on the WSJ
corpus and are evaluated on 3 different corpora: WSJ, TIMIT,
and IEEE. These corpora have been widely utilized in deep
learning based speech enhancement studies. IEEE has a large
number of utterances but few speakers, and is commonly used
to train speaker-dependent models by using utterances of a
single speaker [14], [15]; TIMIT has been used for small-scale
training of noise-dependent and noise-independent models [11],
[18], [20], [35], [39], and WSJ has been used to train speaker-
and noise-independent models [10], [12], [13], [16]. We select
one male and one female speaker from IEEE and treat them
as two different corpora. They are denoted as IEEE Male and
IEEE Female respectively. A detailed description of test data
preparation is given in Section VI-A. The evaluation results in
terms of STOI (%) and PESQ, for babble noise at SNRs of −5
dB and −2 dB, are given in Table I.

One can observe that the performance on the trained corpus,
WSJ, is excellent. STOI is improved by more than 19.5% for all
the models. However, the improvements are much reduced on
untrained corpora, TIMIT, IEEE Male and IEEE Female. For the
IEEE Male speaker, AECNN-SM and CRN even degrade STOI
compared to unprocessed mixtures. Similarly, PESQ is also de-
graded in many cases. The results suggest that the BLSTM model
is better in terms of generalization, even though within-corpus
enhancement results are not as good as the more recent models.
Therefore we choose this model for comparisons in the rest of
the paper.

Next, we illustrate the behavior of the BLSTM model for
different types of noises and at different SNR conditions. The
plots of STOI improvement (%) are shown in the first row of
Fig. 3. We observe that for all the noises the gap between trained
and untrained corpus is the largest at −5 dB and gradually
narrows with increasing SNR. This illustrates that cross-corpus
generalization is a severe issue in low SNR conditions. Similarly,
the generalization gap at low SNRs for different noises is in order
of babble, cafeteria, factory and engine.

Finally, we design an experiment to demonstrate that the
corpus channel is a major culprit for the cross-corpus general-
ization issue. We use Equation 17 to get corpus channel removed
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Fig. 3. Effects of corpus-channel on cross-corpus generalization. First row plots ΔSTOI (%) obtained using original WSJ utterances. Second row plots ΔSTOI
(%) using channel-removed utterances.

Fig. 4. Effects of channel normalization. The spectrogram of one utterance
from each of the three corpora are plotted in the first column. The corresponding
channel removed spectrograms are plotted in the second column.

spectrum of utterances in a corpus. The corpus channel removed
spectrum is used for time-domain reconstruction using Eqs. 10
and 11. For a given corpusC, we useCtr for the corpus channel
estimation, and use it to get corpus channel removed utterances
in both Ctr and Cte. We use a frame size of 2048 and frame
shift of 32 in STFT. We find that this setting introduces negligible
artifacts in the modified utterances.

We show the effect of corpus channel normalization on sample
utterances from different corpora in Fig. 4. One can observe
that the energy distribution in different frequency bins becomes
more prominent, especially in the high-frequency range where
the corpus channel has a large attenuation factor.

We use corpus channel normalized utterances to generate a
new training corpus on WSJ and new test corpora on WSJ,
TIMIT, IEEE Male and IEEE Female. The BLSTM model is
trained on the new WSJ corpus and evaluated on all the test
corpora for four different noises. The improvements in STOI
(%) are plotted in the second row of Fig. 3. These improvements
are significantly higher than those in the first row. For example,
ΔSTOI of the babble noise at −5 dB changes from 5% to
18% for IEEE Male, and 7% to 18% for IEEE Female. In
addition, ΔSTOI improves for all the noises and in all SNR
conditions. This demonstrates that the corpus channel is one of
the main causes for the cross-corpus generalization issue, and
channel differences need to be accounted for in order to improve
cross-corpus generalization.

V. IMPROVING CROSS-CORPUS GENERALIZATION

In this section, we describe different techniques investigated
in this study to improve cross-corpus generalization.

A. Modified Loss Function

We find that using a loss over high energy T-F units is better for
cross-corpus generalization. We use loss over T-F units within
the 20 dB of the maximum amplitude T-F unit. A similar loss
function has been utilized in speaker separation methods, such as
deep clustering [40]. The modified utterance level loss is given
as

L =

∑T
t=0

∑F
f=0[IRM(t, f)−RM(t, f)]2 ·M(t, f)∑T

t=0

∑F
f=0 M(t, f)

(18)

where,

M(t, f) =

{
1, |Y (t, f)| ≥ 0.01 · Max(|Y |)
0 Otherwise

(19)

Authorized licensed use limited to: The Ohio State University. Downloaded on September 07,2020 at 19:33:07 UTC from IEEE Xplore.  Restrictions apply. 



2494 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

B. Channel Normalization

We have discussed in Section IV that removing the corpus
channel can be helpful in improving cross-corpus generalization.
We evaluate the following channel normalization techniques in
this study.

1) Log-Spectral Mean Subtraction: Given a noisy utterance
y, the channel can be estimated by taking the average of log-
spectra over all the frames in the utterance

log|V̂ (f)| = 1

T

T∑
t=0

log|Y (t, f)| (20)

The channel normalized log-spectrum is defined as

log|Y ′(t, f)| = log|Y (t, f)| − log|V̂ (f)| (21)

We use log|Y ′(t, f)| as the input feature in this case. Note that
estimating the channel using noisy utterances may not be as
accurate as using clean utterances because noise and speech
in the data are likely to be recorded in different conditions and
using different kinds of devices. Nevertheless, it can give a good
approximate for the frequency bins dominated by speech. We
add a small positive constant ε before applying the logarithm
operator.

2) RASTA Filter: The RASTA filter has been shown to at-
tenuate the channel effects and improve the generalization of
ASR systems [41]. The RASTA filter is applied over log-spectral
magnitude and is given by

log|Y ′(t, f)| = log|Y (t, f)| − log|Y (t− 1, f)|
+ C · log|Y ′(t− 1, f)| (22)

where C is a parameter that is set to 0.97.

C. Training Corpus

We evaluate following corpora to understand cross-corpus
generalization behavior.

1) WSJ: We use the WSJ0-SI-84 corpus as the baseline since
this corpus has been used in past to train speaker- and noise-
independent models [10], [12], [13].

2) VoxCeleb2: The VoxCeleb2 corpus is promising for cross-
corpus generalization because of the following reasons. First,
it is very large with around 1.1 million utterances of 6000
speakers. Second, it is extracted from YouTube therefore it has
the potential of generalizing to different channels as the uploaded
videos on YouTube are usually recorded in different conditions
and using different devices.

3) LibriSpeech: LibriSpeech is a corpus derived from read
audiobooks from the LibriVox project. It contains around 0.25
million utterances of 2.1 k speakers. It is promising for cross-
corpus generalization because the English utterances are spoken
by different volunteers across the globe. This implies that the
utterances recorded by different volunteers are typically over
different channels.

We have evaluated three different versions of LibriSpeech;
LibriClean, LibriOther, and LibriAll. LibriClean contains rela-
tively clean utterances compared to LibriOther. LibriAll is the

TABLE II
DIFFERENT CORPUS SIZES USED IN THIS STUDY

combination of both LibriClean and LibriOther. We list different
corpora in terms of their size in Table II.

D. Frame Shift

In short-time processing of speech, a frame shift equal to the
half of frame size typically is used, and overlap-and-add is used
during final reconstruction in the time domain. However, when
frame shift is smaller, there will be multiple predictions (>2)
of a single T-F unit from the neighboring frames. This leads to
averaging the multiple predictions of a sample in the overlap-
and-add stage. We find that the simple idea of using a smaller
frame shift leads to a significant improvement in cross-corpus
generalization. We fix the frame size to 32 ms and evaluate frame
shifts of {16 ms, 8 ms, 4 ms, 2 ms}.

VI. EXPERIMENTAL SETTINGS

A. Data Preparation

We train corpus dependent models on WSJ, TIMIT, IEEE
Male, and IEEE Female corpora. Corpus independent models
are trained on WSJ, VoxCeleb2, LibriClean, LibriOther, and
LibriAll. For training, we use all 4620 utterances of the TIMIT
corpus and 576 random utterances out of 720 of IEEE Male and
IEEE Female. All the clean utterances are resampled to 16 kHz.
For WSJ training utterances, we remove all the frames in the
beginning and end that are not within 20 dB of the maximum
frame energy.

Noisy utterances are created during the training time by
randomly adding noise segments to all the utterances in a batch.
For training noises, we use 10000 non-speech sounds from a
sound effect library (www.sound-ideas.com) as in [14]. For each
utterance, we cut a random segment of 4 seconds if the utterance
is longer than 4 seconds. A random noise segment is added to the
utterance at a random SNR in {−5 dB, −4 dB, −3 dB, −2 dB,
−1 dB, 0 dB}. For a corpus containing less than 100000 utter-
ances, an epoch is defined as when the model has seen around
100000 utterances. This corresponds to 174, 22 and 16 noisy
utterances per clean utterance in one epoch of IEEE, TIMIT,
and WSJ respectively.

The WSJ test set consists of 150 utterances of 6 speakers
not included in WSJ training. The TIMIT test set consists of
192 utterances from the core test set. The IEEE Male and IEEE
Female test sets both consist of the 144 clean utterances not
included in their training sets. A test set is generated from 4
different noises: babble, cafeteria, factory and engine, at the
SNRs of {−5 dB,−2 dB, 0 dB}. The babble and cafeteria noises
are from Auditec CD (available at http://www.auditec.com).
Factory and engine noises are from Noisex [42].
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Fig. 5. STOI and PESQ comparisons between the baseline, modified loss, LSMS and RASTA on WSJ.

TABLE III
LEARNING RATE SCHEDULE. E DENOTES THE MAXIMUM NUMBER

OF EPOCHS OF TRAINING

All noisy utterance samples are normalized to the range [−1,
1] and corresponding clean utterances are scaled accordingly to
maintain an SNR. The frame size of 32 ms with the Hamming
window is used for STFT.

B. Training Methodology

The models trained on TIMIT and IEEE use a dropout rate of
0.5 for each layer except for the output. The models are trained
for 10 epochs on TIMIT and IEEE, 100 epochs on LibriSpeech,
and 20 epochs on VoxCeleb2.

The Adam optimizer [43] is used with a learning rate schedule
given in Table III. A batch size of 32 utterances is used. All the
utterances that are shorter than the longest utterance in a batch
are padded with zero at the end. The loss values computed over
the outputs corresponding to zero-padded inputs are ignored.

C. Evaluation Metrics

In our experiments, models are evaluated using STOI [32]
and PESQ [33], which represent the standard metrics for speech
enhancement. STOI has a typical value range from 0 to 1, which
can be roughly interpreted as percent correct. PESQ values range
from −0.5 to 4.5.

D. Baseline

For the baseline, we train the BLSTM model on WSJ using
the loss function given in Equation 8. STFT magnitude is used
as the feature with the channel normalization in Equation 22
but applied to STFT magnitude instead of log magnitude. We

TABLE IV
PERFORMANCE IMPROVEMENTS ON BABBLE NOISE BY GRADUALLY

INCORPORATING DIFFERENT TECHNIQUES PROPOSED IN THIS STUDY

call this model SMS, standing for spectral mean subtraction (in
Fig. 5 and Table IV).

VII. RESULTS AND DISCUSSIONS

First, we evaluate the modified loss function (Section V.A) and
two channel normalization methods (Section V.B) and compare
them with the baseline model. The models are trained on the WSJ
corpus with a frame shift of 16 ms. We denote the baseline with
SMS and the model with modified loss as SMS_MOD. Average
STOI and PESQ over all the four test noises and at SNRs of
−5 dB, −2 dB, and 0 dB are plotted in Fig. 5.

We observe that SMS_MOD is consistently better than SMS.
The improvement is maximum at −5 dB for all the corpora. The
maximum improvement is observed for the IEEE Male corpus.
The objective scores indicate that training a model using a loss
over all the T-F units leads to overfitting on the corpus. Using
a loss computed over only high energy T-F units can achieve
better generalization. All the following models trained in this
study, except for SMS, will use the modified loss function.
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Fig. 6. STOI and PESQ comparisons between different training corpora with the frame shift of 16 ms.

Fig. 7. STOI and PESQ comparisons between different frame shifts on LibriAll.

The objective scores for two normalization schemes sug-
gest that LSMS and RASTA both are better than SMS and
SMS_MOD for all untrained corpora. LSMS is consistently
better than RASTA for all the corpora and at all SNR conditions.

Next, we examine different training corpora on 4 test
noises. The models are trained using LSMS with a frame
shift of 16 ms. The average STOI and PESQ over four
test noises are plotted in Fig. 6. A general trend for STOI
and PESQ scores are LibriAll > LibriOther > LibriCLean >
VoxCeleb2 > WSJ, except for TIMIT where VoxCeleb2 is
worse than WSJ.

A key observation from the corpora comparisons is that the
corpus content is important to achieve better generalization
but not the size of the corpus. A corpus with multiple possible
channels sources, LibriAll, is very effective for generalization.
However, a similar corpus VoxCeleb2 containing 4.3 times
more utterances is not as effective. This observation is further

supported by the fact that no dramatic performance differences
exist between LibriClean (104014 utterances), LibriOther
(148688 utterances) and LibriAll (252702 utterances), all of
which contain utterances from the LibriSpeech corpus.

Perhaps surprisingly, VoxCeleb2 is not able to obtain good
generalization. This might be due to the types of utterances in
VoxCeleb2. Most of the utterances include some sort of rever-
beration, cross-talk or background noise. Hence, it may not be
very suitable to be employed for the enhancement of utterances
from clean corpora. More research is needed to explain the
cross-corpus generalization behavior of VoxCeleb2.

Further, we compare models trained with different frame
shifts. We compare frame shifts from {16 ms, 8 ms, 4 ms,
2 ms}. All the models are trained on LibriAll using LSMS with
a frame size of 32 ms. Average STOI and PESQ scores are
plotted in Fig. 7. We can observe a clear improvement in the
objective scores when moving from 16 ms to 8 ms, and from
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Fig. 8. STOI and PESQ comparisons between different training corpora with the frame shift of 4 ms.

8 ms to 4 ms. However, the performances for 4 ms and 2 ms are
very similar, suggesting the diminishing effect from reducing
frame shift. Note that similar performance improvements are
obtained using all the training corpora, suggesting that using
small frame shift is an effective technique applicable to all
training corpora. The performance is also improved on the
trained corpus, WSJ in this case, when trained using smaller
frame shifts. This is an important observation because getting
an improvement on the trained corpus does not necessarily result
in an improvement over untrained corpora as we have reported in
Table I.

We also compare all the training corpora using a smaller frame
shift of 4 ms and the results are plotted in Fig. 8. We obtain
the same performance trend as using the frame shift of 16 ms.
This implies that using smaller frame shift and better training
corpora are two independent techniques for improving cross-
corpus generalization.

Furthermore, we report results on babble noise when differ-
ent techniques to improve channel generalization are gradually
incorporated into the baseline model. The results are given in
Table IV. The bold scores in the last row of STOI and PESQ,
Same Corpus (trained corpus), provide the scores obtained by
training a model on the same corpus as the test corpus. Note that
the results on the trained corpora, TIMIT and IEEE, represent
benchmarks where the number of unique training utterances
is small. IEEE corpora have only 576 training utterances and
TIMIT has 4620 utterances in which many speakers speak the
same set of sentences. A good model should be able to match
the scores obtained using Same Corpus.

We observe that the most effective approach is the use of
LibriAll that improves STOI at −5 dB by 3.2% on TIMIT,
8.1% on IEEE Male, and 5.3% on IEEE Female while obtaining
similar performance on WSJ as to that obtained by training on
WSJ. Similarly, smaller frame shift is also very effective as it
improves STOI at −5 dB by 3.5% on TIMIT, 1.8% on IEEE
Male, and 3.5% on IEEE Female.

TABLE V
PERFORMANCE IMPROVEMENTS ON REVERBERANT SPEECH MIXED WITH

BABBLE NOISE BY GRADUALLY INCORPORATING DIFFERENT TECHNIQUES

All the proposed techniques are trained and evaluated on cor-
pora with negligible room reverberation. Speech enhancement in
the presence of both reverberation and background noise at low
SNRs, such as −5 dB, is an extremely difficult problem, and
would require training with noisy-reverberant utterances [44].
To examine the generality of the proposed techniques, we further
evaluate on noisy-reverberant speech data. To create reverber-
ant utterances, we utilize real room impulse responses (RIRs)
in [45]. We use all 74 RIRs corresponding to the room with the
reverberation time of 0.32 seconds. A given clean utterance is
convolved with a randomly picked RIR, and is followed by noise
addition. The results are reported in Table V, where anechoic
speech is considered the reference signal in the evaluation. Note
that the models already trained without reverberation are tested
without retraining, and hence it is expected that the amounts of
improvement are lower than those in Table IV. However, we
observe a similar trend of cross-corpus generalization, except
for the modified loss which is worse than the baseline. The
model trained on LibriAll using LSMS with a frame shift of
4 ms performs the best in this case as well.
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VIII. CONCLUDING REMARKS

This work reveals robustness problem with deep learning
based speech enhancement algorithms. We have shown that a
model trained on a given corpus fails to generalize to utterances
from an untrained corpus. The problem is more severe at low
SNR levels, where speech enhancement is actually more needed.
We have established that the cross-corpus generalization issue
is mainly due to the channel mismatch between a trained and
untrained corpus.

We have examined traditional channel normalization methods
and found that they improve performance on untrained corpora,
but improvement is limited, and hence other techniques need to
be developed to further improve generalization.

We have proposed two effective methods to significantly
improve cross-corpus generalization. The first technique is to
use a corpus obtained using crowd-sourced audio recordings
such as LibriSpeech and VoxCeleb. We found LibriSpeech to be
significantly better than VoxCeleb. The second technique is the
use of a smaller frame shift in STFT and ISTFT layers.

Further research is needed to evaluate the effectiveness of Lib-
riSpeech and smaller frame shift for complex-domain and time-
domain speech enhancement models. The behavior of VoxCeleb,
which is found to be not very effective for generalization, needs
to be further explored for a better understanding of cross-corpus
generalization.
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