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ABSTRACT

In this work, we propose a fully convolutional neural net-
work for real-time speech enhancement in the time domain.
The proposed network is an encoder-decoder based architec-
ture with skip connections. The layers in the encoder and
the decoder are followed by densely connected blocks com-
prising of dilated and causal convolutions. The dilated con-
volutions help in context aggregation at different resolutions.
The causal convolutions are used to avoid information flow
from future frames, hence making the network suitable for
real-time applications. We also propose to use sub-pixel con-
volutional layers in the decoder for upsampling. Further, the
model is trained using a loss function with two components;
a time-domain loss and a frequency-domain loss. The pro-
posed loss function outperforms the time-domain loss. Ex-
perimental results show that the proposed model significantly
outperforms other real-time state-of-the-art models in terms
of objective intelligibility and quality scores.

Index Terms— time domain, fully convolutional, dense
network, time-frequency loss, speaker- and noise-independent

1. INTRODUCTION

Speech enhancement is concerned with improving the intel-
ligibility and quality of a speech signal corrupted by additive
noise. It is used as a preprocessor in many applications such
as automatic speech recognition, telecommunication, hearing
aids, and cochlear implants.

In recent years, speech enhancement has been formulated
as a supervised learning problem and deep neural networks
have been extensively explored [1]. Supervised approaches to
speech enhancement generally convert the speech signal to a
time-frequency (T-F) representation, and a target signal con-
structed from the T-F representation is used as the training
target. The most popular training targets are ideal ratio mask
(IRM) [2], phase-sensitive mask (PSM) [3], and short-time
Fourier transform (STFT) magnitude. These training targets
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are utilized to enhance only the STFT magnitude. The mix-
ture phase is used unaltered for the time-domain signal recon-
struction.

The phase of noisy speech is not enhanced mainly due
to no clear learnable structure in it [4] and was believed to
be unimportant for speech enhancement [5]. A more recent
study demonstrated that the phase is important for the percep-
tual quality of speech, especially at low signal-to-noise ratio
(SNR) conditions [6]. This has led researchers to explore al-
gorithms to enhance both the phase and the magnitude using
deep neural networks.

The two popular approaches to enhance both the phase
and the magnitude using deep learning are complex-domain
enhancement and time-domain enhancement. In complex
enhancement, generally, a DNN is trained to map the noisy
STFT to the complex IRM or the clean STFT. It has been
explored in [4, 7, 8, 9, 10] with promising results. The time-
domain approaches do not require the frequency-domain
transformation where models are trained to directly predict
the clean raw samples from the noisy samples. Additionally,
the time domain networks can learn to extract features or
representations that are well suited for the particular task of
speech enhancement. Representative time-domain methods
include [11, 12, 13].

In this work, we propose a fully convolutional neural net-
work for real-time speech enhancement in the time domain.
The proposed network is an encoder-decoder based architec-
ture with skip connections. Our novel contribution is to add
densely connected blocks [14] with dilated convolutions af-
ter each layer in the encoder and the decoder. Additionally,
we employ sub-pixel convolutional layers instead of trans-
posed convolutions for upsampling. The dilated and densely
connected blocks help in long-range context aggregation over
different resolutions of the signal. We also propose to train
the model using a loss that is a combination of a time-domain
loss and a frequency-domain loss.

The rest of this paper is organized as follows. We describe
the proposed approach in Section 2. The experimental setup
and results are given in Section 3. Section 4 concludes this
paper.
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2. MODEL DESCRIPTION

2.1. Dilated convolutions

Dilated convolutions are used to increase the receptive field
of a convolutional neural network and are becoming increas-
ingly popular as an efficient alternative to long short-term
memory networks (LSTMs) for learning long-range depen-
dencies. In a dilated convolution with a dilation rate of r,
r − 1 zeros are inserted between the consecutive coefficients
of a filter. A dilation rate of r in a filter of size M , increases
the receptive field from M to (M − 1) ∗ (r − 1) +M . The
receptive field can be set to arbitrarily large size by using an
exponentially increasing dilation rate within the network. A
general practice is to use a dilation rate sequence of form {1,
2, 4, 8, 16, ...}. The dense block in our model comprises of
dilated and causal convolutions. The causal convolutions are
used across the frames to make sure that there is no leakage of
information from the future frames. Note that we do not use
causal convolutions within a frame. An illustrative diagram
of dilated and causal convolution is shown in Fig. 1.
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Fig. 1: An example of dilated causal convolution with a filter
of size 2.

2.2. Densely connected networks

Densely connected networks (DCN) were recently proposed
in [14]. In a DCN, the inputs to a given layer in the network
are a concatenation of the outputs from all the previous lay-
ers. This approach has two major advantages. First, the dense
connection to all the previous layers avoids the vanishing gra-
dient problem. Second, a thinner dense network is found to
outperform a wider normal network and hence improving the
parameter efficiency of the network. In our model, we pro-
pose a dilated dense block that is used after each layer in the
encoder and the decoder of the model. An illustrative diagram
of the proposed dense block is shown in Fig. 2.

Each dense block consists of five layers of 2-dimensional
convolutions. The convolutions across the frames are causal.
The causal convolutions make sure that the proposed ap-
proach is suitable for real-time implementation. Each convo-
lution is followed by layer normalization [15] and parametric
ReLU (PReLU) nonlinearity [16]. The dilation rates in each
dense block are set to 1, 2, 4, 8 and 16 as shown in Fig. 2.
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Fig. 2: The proposed dilated dense block. The dilation rate is
exponentially increased from 1 to 16.

2.3. Sub-pixel convolutions

Sub-pixel convolutions are used as a learnable upsampling
layer within a convolutional neural network. It was proposed
for image super-resolution in [17]. In this work, we use sub-
pixel convolution as a better alternative for transposed con-
volution to avoid checkerboard artifacts [18]. In a transposed
convolution, an input signal is first upsampled by inserting
zeros between the consecutive samples followed by a con-
volutional layer to get a signal with non-zero entries. This
leads to having an asymmetric configuration if the filter stride
is not divisible by the filter length causing checkerboard arti-
facts [18]. In sub-pixel convolution, convolution is performed
over the original signal (without inserting zeros) and the out-
put number of channels is increased by a multiplicative factor
of the upsampling rate. The extra channels are reshaped to
get the desired upsampled signal. An illustrative diagram of
the upsampling of a 1D signal by a factor of 2 using sub-pixel
convolution is shown in Fig. 3.
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Fig. 3: An illustration of sub-pixel convolution for upsam-
pling of a 1D signal by a factor of 2.

2.4. Model architecture

The schematic diagram of the model architecture is shown in
the left part of Fig. 4. The model consists of an input layer, an
encoder, dilated and dense blocks, a decoder, and an output
layer. All the convolutions except for the output layer follow
layer normalization and PReLU nonlinearity. The input to the
model is of size [batch size, 1, num frames, frame size].
The input layer uses filters of size (1, 1) to increase the
number of channels to 64. The input layer is followed by
a dense block. The convolutions in all the dense blocks
use filters of size (2, 3) with 64 output channels. Each
layer in the encoder first halves the dimension (downsam-
pling) along the frame axis (last axis) using a convolution
with a stride of (1, 2) and filters of size (1, 3). The down-
sampling is followed by a dense block. The dense blocks
after each layer in the encoder help in context aggrega-
tion at different resolutions. There are six such layers in
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Fig. 4: The proposed model and loss function.

the encoder and the final output of the encoder is of size
[batch size, 64, num frames, frame size/64].

The decoder uses sub-pixel convolutions and dense blocks
to successively reconstruct the signal to the original size. The
input to each layer in the decoder is a concatenation (along
the channel axis) of the previous layer output and the output
from the corresponding symmetric layer in the encoder. The
sub-pixel convolutions use filters of size (1, 3) to double the
input size along the frame axis. Finally, the output layer uses
filters of size (1, 1) to output the enhanced frames with one
channel.

2.5. Loss function

We use a combination of two losses for model training. First,
the enhanced frames are converted to a waveform using
overlap-and-add method. An utterance level loss is computed
in the time domain using mean squared error between the
enhanced utterance and the clean utterance. The time-domain
loss is defined as:

Lt(x, x̂) =
1

M

M−1∑
n=0

(xi[n]− x̂i[n])2 (1)

where x[n] and ˆx[n] denote the nth sample of the clean
and the enhanced utterance respectively and M is utterance
length.

Second, we take STFT of the utterances and use L1 loss
[19] over the L1 norm of the STFT coefficients as in [20, 11].
The frequency-domain loss is given by:

Lf (x, x̂) =
1

T · F

T∑
t=1

F∑
f=1

|(|X(t, f)r|+ |X(t, f)i|)−

(|X̂(t, f)r|+ |X̂(t, f)i|)|

(2)

where X(t, f) and X̂(t, f) are the T-F units of STFTs of x
and x̂ respectively. T is the number of frames and F is the
number of frequency bins. Xr and Xi, respectively, denote
the real and the imaginary part of a complex variable X .

Finally, the time and the frequency domain losses are
combined in the following way.

L(x, x̂) = α ∗ Lt(x, x̂) + (1− α) ∗ Lf (x, x̂) (3)

where α is a hyper-parameter that is tuned on the validation
set. An illustrative diagram of the loss computation is shown
in the right part of Fig. 4.

3. EXPERIMENTS

3.1. Datasets

We evaluate our system in a speaker- and noise-independent
way by training it on a large number of noises and speakers.
We use 7138 utterances from the WSJ0 SI-84 dataset [21]. It
consists of 83 speakers (42 males and 41 females) in which 76
are used for training and remaining 6 (3 males and 3 females)
are used for evaluation.

For training, we use 10000 non-speech sounds from a
sound effect library (available at www.sound-ideas.
com) [22] and generate 320000 utterances at the SNRs of -5
dB, -4 dB, -3 dB, -2 dB, -1 dB and 0 dB. A noisy utterance
is created in the following way. First, an utterance from the
training speakers, an SNR, and a noise type are randomly
selected. Then the selected utterance is mixed with a random
segment of the selected noise type at the selected SNR.

For the test set, we use two noises (babble and cafe-
teria) from an Auditec CD (available at http://www.
auditec.com), and generate 150 mixtures at each SNR of
-5 dB, -2 dB, 0 dB, 2 dB, and 5 dB. For the validation set, we
use 6 speakers from the training set (150 utterances) and mix
it with a factory noise at an SNR of -5 dB.
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Table 1: Model comparisons in terms of STOI and PESQ scores on untrained speakers.
test noise ADTBabble ADTCafeteria
test SNR -5 dB -2 dB 0 dB 2 dB 5 dB Average -5 dB -2 dB 0 dB 2 dB 5 dB Average

STOI (%)

Mixture 58.42 65.53 70.52 75.02 81.30 70.16 57.05 64.71 69.65 74.46 80.95 69.36
CRN 80.30 86.82 89.61 91.50 93.61 88.37 78.10 85.10 88.24 90.61 92.99 87.01

AECNN-SM 81.48 88.25 91.06 92.96 94.81 89.71 79.54 87.00 89.84 92.02 94.11 88.50
TCNN 82.80 88.90 91.25 92.98 94.75 90.14 80.60 87.10 89.81 91.94 94.01 88.69

DDAEC-T 83.48 89.53 91.92 93.55 95.23 90.74 81.38 87.78 90.53 92.50 94.54 89.35
DDAEC-TF 84.03 90.29 92.53 94.15 95.67 91.33 82.08 88.50 91.13 93.01 94.97 89.94

PESQ

Mixture 1.56 1.71 1.82 1.94 2.12 1.83 1.46 1.63 1.77 1.91 2.12 1.78
CRN 2.18 2.50 2.67 2.82 3.01 2.64 2.17 2.46 2.63 2.78 2.97 2.60

AECNN-SM 2.21 2.60 2.80 2.97 3.17 2.75 2.23 2.60 2.76 2.93 3.12 2.73
TCNN 2.18 2.52 2.70 2.86 3.06 2.66 2.14 2.45 2.62 2.78 2.98 2.59

DDAEC-T 2.23 2.57 2.75 2.91 3.12 2.72 2.21 2.51 2.70 2.86 3.07 2.67
DDAEC-TF 2.30 2.71 2.91 3.08 3.28 2.86 2.32 2.65 2.83 2.99 3.20 2.80

3.2. Baselines

For the baselines, we train 4 different models. First, we train a
complex spectrogram mapping based model proposed in [8].
We call this model CRN in our comparisons. Second, we train
a time-domain model that is a frame-based system with large
frame size (1.024 seconds) and trained using a loss over STFT
magnitudes [20]. We call this model AECNN-SM. Finally,
we train the TCNN model proposed in [13].

3.3. Experimental settings

All the utterances are resampled to 16 kHz. The frames are
extracted using a rectangular window of size 32 ms and an
overlap of 16 ms. In each epoch of the training, we chunk a
random segment of 4 seconds from an utterance if it is larger
than 4 seconds. The smaller utterances are zero-padded to
match the size of the largest utterance in the batch. The Adam
optimizer is used for stochastic gradient descent (SGD) based
optimization. We train the model for 15 epochs with a batch
size of 4 utterances and a learning rate schedule given in Table
2. At the training time, we observe the short-time objective in-
telligibility (STOI) [23] score on the validation set after each
epoch of training and the model with the maximum STOI is
used for evaluation. We set α in Equation 3 to 0.8.

We provide the code for our implementation at https:
//github.com/ashutosh620/DDAEC.

Table 2: Learning rate schedule for training the proposed
model.

Epochs 1 to 3 4 to 9 10 to 12 13 to 15
Learning rate 0.0002 0.0001 0.00005 0.00001

3.4. Experimental results

We compare all the models in terms of STOI whose values
typically range between 0 and 1 and perceptual evaluation
of speech quality (PESQ) whose values range from -0.5 to
4.5 [24]. The results are given in Table 2. We call the pro-
posed model DDAEC standing for dilated and dense autoen-
coder. We report two results on DDAEC, one trained only
using time-domain loss (DDAEC-T) and the other trained us-
ing proposed time-frequency loss (DDAEC-TF).

First, we observe that the DDAEC-T model outperforms
all the baseline models in terms of STOI. For PESQ, it out-
performs all the baseline models except AECNN-SM which
is a frame-based model with large frame size, hence not suit-
able for real-time implementation. But, when using time-
frequency loss, the DDAEC outperforms all the baseline mod-
els for both the scores and at all SNR conditions. For STOI,
the best baseline is TCNN and an average improvement of
1.19% and 1.24% is obtained for babble and cafeteria noise
respectively. For PESQ, the best baseline is AECNN-SM
and improvements of 0.11 and 0.17 are obtained for the two
noises. The proposed DDAEC-T and DDAEC-TF signifi-
cantly outperform the CRN model which is a frequency do-
main model for complex-spectrogram mapping. This demon-
strates the superiority of a time-domain model over a fre-
quency domain model. Similarly, DDAEC-T and DDAEC-
TF both outperform another time-domain model TCNN.

Next, we compare the proposed model in terms of the
number of parameters as listed in Table 3. The proposed
model has the fewest number of parameters followed by
TCNN. The CRN has the maximum number of parameters
even though it uses group LSTMs to reduce the number of
parameters.

Table 3: Model comparisons in terms of number of trainable
parameters.

Model CRN AECNN-SM TCNN DDAEC
# of parameters in millions 9.06 6.45 5.8 4.82

4. CONCLUSIONS

We have proposed a novel fully convolutional neural net-
work for speech enhancement. The model utilizes dense
connections with dilated convolutions for long-range context
aggregation. The proposed model is suitable for real-time im-
plementation and outperforms other state-of-the-art models
in terms of objective intelligibility and quality scores. Fu-
ture work includes exploring the proposed model for multi-
channel speech enhancement and other speech preprocessing
tasks such as speaker separation and speech dereverberation.
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