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Self-Attending RNN for Speech Enhancement to
Improve Cross-Corpus Generalization

Ashutosh Pandey

Abstract—Deep neural networks (DNNs) represent the main-
stream methodology for supervised speech enhancement, primarily
due to their capability to model complex functions using hierarchi-
cal representations. However, a recent study revealed that DNNs
trained on a single corpus fail to generalize to untrained corpora,
especially in low signal-to-noise ratio (SNR) conditions. Developing
a noise, speaker, and corpus independent speech enhancement
algorithm is essential for real-world applications. In this study,
we propose a self-attending recurrent neural network, or attentive
recurrent network (ARN), for time-domain speech enhancement to
improve cross-corpus generalization. ARN comprises of recurrent
neural networks (RNNs) augmented with self-attention blocks and
feedforward blocks. We evaluate ARN on different corpora with
nonstationary noises in low SNR conditions. Experimental results
demonstrate that ARN substantially outperforms competitive ap-
proaches to time-domain speech enhancement, such as RNNs and
dual-path ARNs. Additionally, we report an important finding
that the two popular approaches to speech enhancement: complex
spectral mapping and time-domain enhancement, obtain similar
results for RNN and ARN with large-scale training. We also provide
a challenging subset of the test set used in this study for evaluating
future algorithms and facilitating direct comparisons.

Index Terms—Cross-corpus generalization, recurrent neural
network, speech enhancement, self-attention, time-domain
enhancement.

I. INTRODUCTION

ACKGROUND noise is unavoidable in the real world. It
B reduces the intelligibility and quality of a speech signal for
human listeners. Additionally, it can severely degrade the perfor-
mance of speech-based applications, such as automatic speech
recognition, speaker identification, and hearing aids. Speech
enhancement aims at removing or attenuating background noise
from a noisy speech signal. It is used as a preprocessor in
speech-based applications to improve their performance in noisy
environments. Monaural speech enhancement, which is the task
of speech enhancement from single microphone recordings, is
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considered an extremely challenging problem, especially in the
presence of nonstationary noises in low signal-to-noise ratio
(SNR) conditions. This study focuses on monaural speech en-
hancement in the time domain.

Traditional approaches to monaural speech enhancement in-
clude spectral subtraction, Wiener filtering and statistical model-
based methods [1]. In recent years, supervised approaches
to speech enhancement using deep neural networks (DNNs)
have become the mainstream methodology for speech enhance-
ment [2], primarily due to their capability to learn complex rela-
tions from supervised data by using hierarchical representations.

Speech enhancement mainly uses time-frequency represen-
tations, such as short-time Fourier transform (STFT), for ex-
tracting input features and training targets. Training targets
play an important role in DNN performance and can be ei-
ther masking based or mapping based. Masking based targets,
such as ideal ratio mask [3] and phase sensitive mask [4],
are based on time-frequency (T-F) relations between the noisy
and the clean speech, whereas mapping based targets, such as
spectral magnitude and log-spectral magnitude are based on
clean speech [5], [6]. DNN is trained in a supervised way to
estimate training targets from input features. During evaluation,
the enhanced waveform is obtained by reconstructing a signal
from the estimated training target.

Most of the popular approaches to speech enhancement aim
at enhancing only the spectral magnitude and use unaltered
noisy phase for time-domain reconstruction [5]-[13]. This is
primarily due to a belief that spectral phase is unimportant for
speech enhancement, and it exhibits no T-F structure amenable to
supervised learning [14]. However, a relatively recent study has
demonstrated that phase can play an important role in the quality
of enhanced speech, especially in low SNR conditions [15]. Asa
result, researchers have started exploring ways to enhance both
the spectral magnitude and the spectral phase. The first study
in this regard was done by Williamson et al. [14], where the
Cartesian representation of STFT in terms of real and imaginary
parts was used instead of the widely used polar representation
to propose complex ratio masking due to the T-F structure
in the Cartesian representation. Complex ratio masking was
further utilized in many studies, such as [16]-[18]. Complex
spectral mapping, a related approach for jointly enhancing the
magnitude and the phase, aims at directly predicting the real
and the imaginary part of the clean spectrogram from the noisy
spectrogram [19]-[22].

On the other hand, time-domain speech enhancement aims
at directly predicting the clean speech samples from the noisy
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speech samples, and in the process, magnitude and phase are
jointly enhanced [23], [24]-[29]. It does not require computa-
tions associated with the conversion of a signal to and from the
frequency domain, and feature extraction becomes an implicit
part of supervised learning.

The study in [23] proposed a fully convolutional neural
network (CNN) for time-domain speech enhancement. Time-
domain speech enhancement was further improved by using
better processing blocks, such as dilated convolutions [25],
[26], [29], dense connections [30], self-attention [31], [32], and
dual-path recurrent neural networks (RNNs) [33], [34].

Additionally, time-domain speech enhancement has benefited
from better optimization methods, such as adversarial training
[24] and better loss functions, such as a loss incorporating the
objective metric of short-time objective intelligibility (STOI)
[27], [35] or spectral magnitudes [28], [36]. The STOI-based
loss in [27] was able to improve STOI but was found to be
suboptimal for objective quality metric, perceptual evaluation
of speech quality (PESQ) [24], and segmental SNR. The spec-
tral magnitude based loss [28], [36], on the other hand, was
able to improve both STOI and PESQ but was suboptimal for
scale-invariant SNR. In [32], the spectral magnitude based loss
was found to exhibit an artifact in the enhanced audio, which
was subsequently removed by using an improved loss called
phase constrained magnitude (PCM). The PCM loss not only
removed the artifact but also obtained consistent improvement
for different metrics, such as STOI, PESQ, and SNR.

Recently, it has been revealed that DNNs trained for speech
enhancement do not generalize to untrained corpora, especially
in low SNR conditions [37]. Even time-domain enhancement
networks, such as auto-encoder convolutional neural network
(AECNN) [28] and temporal convolutional neural network
(TCNN) [29], that exhibit strong performance for untrained
speakers from the training corpus, fail to generalize to speakers
from untrained corpora. It is revealed that the corpus channel un-
willingly acquired due to recording conditions is one of the main
culprits for performance degradation from trained to untrained
corpora. Several techniques were proposed to improve cross-
corpus generalization, such as channel normalization, a better
training corpus, and a smaller frame shift [37]. The proposed
techniques obtain significant improvements on untrained cor-
pora for an IRM-based long short-term memory (LSTM) recur-
rent neural network (RNN). This work was further extended to
complex spectral mapping with improved cross-corpus general-
ization [22]. An interesting finding in [22] is that a sophisticated
architecture for complex spectral mapping, gated convolutional
neural network (GCRN), which obtains impressive performance
on trained corpora, fails to generalize to untrained corpora.
Further, simple LSTM RNNs with a smaller frame shift are
found to be very helpful for cross-corpus generalization.

Self-attention is a widely utilized mechanism for sequence-
to-sequence tasks, such as machine translation [38], image gen-
eration [39] and ASR [40]. It was first introduced in [38], which
obtained start-of-the-art performance for sequence-to-sequence
tasks by using networks comprising self-attention blocks only.
In self-attention, a given output in a sequence is computed
using a subset of the input sequence that is helpful for the
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output prediction. In other words, an output is predicted by
attending to a subset of the input for improving output prediction.
Many recent studies [31], [32], [34], [41]-[44], [18], [45] have
employed self-attention for speech enhancement and reported
significant improvements.

Nicolson et al. [44] developed a network similar to the encoder
of the transformer network [38] for a priori SNR estimation.
The estimated SNR was used with a minimum-mean square
error (MMSE) log-spectral amplitude estimator for magnitude
enhancement. In a subsequent study [45], a similar network was
employed for predicting linear predictive coding (LPC) power
spectra, which was utilized with an augmented Kalman filter for
time-domain speech enhancement. Zhao et al. [41] used self-
attention within a CNN for spectral mapping based magnitude
enhancement for speech dereverberation.

Self-attention for complex ratio masking and complex
spectral mapping has been studied for speech enhancement.
A complex-valued transformer with Gaussian-weighted self-
attention mechanism was proposed in [42]. A speaker-aware
network using self-attention was investigated in [43], and a self-
attention mechanism within a convolutional recurrent network
was utilized in [18].

The first study to use self-attention for time-domain speech
enhancement was reported in [31], which proposed a self-
attention mechanism within a 1-dimensional UNet [46]. Pandey
et al. proposed to use self-attention within layers of a dense
UNet, which comprised dense blocks within encoder and de-
coder layers. A recent study [34] also investigated self-attention
with a dual-path RNN for time-domain speech enhancement.
However, we find that time-domain self-attending networks,
such as the ones in [32] and [34], obtain subpar performance
on untrained corpora.

In this work, we propose a self-attending RNN, or attentive
recurrent network (ARN), for time-domain speech enhancement
to improve cross-corpus generalization. ARN comprises RNN
augmented with a self-attention block and a feedforward block.
The proposed ARN is motivated by observations such as RNNs
with a smaller frame shift are helpful for cross-corpus gener-
alization [22], [37], and self-attention is a general mechanism
effective for speech enhancement [18], [31], [32], [34], [41]-
[45]. We employ an efficient attention mechanism proposed
specifically for RNN [47], which results in reduced memory
consumption, faster training, and similar or better performance
than the widely used attention mechanism in [38].

We find that self-attention mechanism in ARN leads to sub-
stantial improvement on untrained corpora. Further, ARN out-
performs existing approaches to speech enhancement in terms of
cross-corpus generalization. Additionally, we compare complex
spectral mapping and time-domain enhancement for RNN and
ARN and find that complex spectral mapping and time-domain
enhancement obtain statistically similar results when trained on
a large corpus.

We find a subset of our test set to be particularly challeng-
ing for improving objective intelligibility and quality scores.
To stimulate progress, we make this test set available on-
line for evaluating future algorithms and facilitating direct
comparisons.
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The rest of the paper is organized as follows. Section II
describes time-domain speech enhancement. Section III presents
the details of ARN building blocks and Section IV describes
ARN architecture for time-domain speech enhancement. Ex-
perimental settings are given in Section IV, and results and
comparisons are presented in Section V. Concluding remarks
are given in Section VI.

II. TIME-DOMAIN SPEECH ENHANCEMENT

A noisy speech signal x is defined as the sum of a clean speech
signal s and a noise signal n

r=s+n (1)

{x,s,n} € R™*! and M is the number of samples in the
speech signal. A speech enhancement algorithm aims at obtain-
ing a close estimate, S, of s given x.

The goal of a time-domain speech enhancement algorithm is
to compute § directly from @ instead of using a T-F representa-
tion of . Time-domain speech enhancement using a DNN can
be formulated as

8= fo(x) @)

where fy denotes a function represented by a DNN parametrized
by 6.

A. Frame-Level Processing

Generally, a speech enhancement algorithm is designed to
process frames of a speech signal. Given a noisy signal x, it is
first chunked into overlapping frames which is then processed
at frame-level by a speech enhancement model. Let X € RT*L
denote the matrix containing frames of signal = and x; € R*!
the t*" frame. x; is defined as

k) =z[(t—1)-J+k, k=0,....L—1 (3

where T is the number of frames, L is the frame length, and
J is the frame shift. T is given by [22], where [ ] denotes the
ceiling function. x is padded with zeros if M is not divisible by
J. Frame-level processing using a DNN can be defined as

B 33t+T2) 4)

where 8, is computed using x;, T} past frames, and T3 future
frames.

St = fo(évthl, vy L1, Lty Lpg1y - -

B. Causal Speech Enhancement

A frame-level speech enhancement algorithm is considered
causal if the estimation of a given frame 3, is computed using
noisy frames at time instances less than or equal to ¢. For causal
speech enhancement (4) is modified as

'7wt717wt) 5

where S; is computed using x; and 77 past frames.

Causality is a necessary requirement for real-time speech
enhancement. Further, we observe that a causal algorithm ex-
hibits greater degradation on untrained corpora compared to a
corresponding non-causal algorithm. Therefore, we also develop
and compare causal algorithms.

§t = f0($t7T17 .-
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Fig. 1. Diagram of ARN. Layer Norm denotes a layer-normalization layer
and @ is an elementwise addition operator.
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Fig. 2. Diagram of an LSTM with three gates. Symbol ® denotes element-
wise multiplication.

III. ATTENTIVE RECURRENT NETWORK

A block diagram of ARN is given in Fig. 1. The building
blocks of ARN are layer normalization, RNN, self-attention
block, and feedforward block. Next, we describe these building
blocks one by one.

A. Layer Normalization

Layer normalization is a popular normalization technique
used within DNNs to improve generalization and facilitate faster
training [48]. It was proposed as an alternative to batch normal-
ization [49], which is found to be sensitive to training batch
size.

Let X € RT*N be a matrix and x; be its t*" row. We use the
layer normalization defined as

It _ﬂlazt
2
1/0'% + €

where fi,,, and o2 , respectively, are mean and variance of ;.
Symbols « and 3 are trainable parameters of the same size as x4,
® denotes elementwise multiplication, and € is a small positive
constant used to avoid division by zero.

a.:;wrm —

Ovy+p8, t=1,...,T ©6)

B. Recurrent Neural Network

We use LSTM RNN in ARN. An illustrative diagram of
an LSTM is shown in Fig. 2. Given an input vector sequence
{Z1,...,@¢_1,%¢, Tt 41, ..., 27}, the hidden state at time ¢,
hy, is computed as

it =0(Wiuxe + Wi hi1 + b)) (7
fi=0(W i + Wiphi 1 + by) (®
gt = Tanh(W g,y + Wgphy1 + by) ©)
o, =0(Wxy + Wophi1 +b,) (10)
a=Ffi0c1+%Og; (11)
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Fig. 3. Attention block in ARN. The inputs to the block are g+, k¢, and v
and the output from the block is a;.

h; = o; ® Tanh(c;) (12)
1
pu— 1
o(s) = T (13)
e’ —e?
Tanh(s) = ——— 14
anh(s) = S (14

where x¢, g;, and c¢; respectively represent input, block input,
and memory (cell) state at time t. In additions %;, f;, and o,
are gates known as input gate, forget gate and output gate,
respectively. W’s and b’s denote trainable weights and biases.

C. Self-Attention Block

A general attention mechanism is defined using three com-
ponents: key K € RT*%, value V € RT*5, and query Q €
RT*R_First, correlation scores between pairs of rows from Q
and K, {Q;, K;},wherei, j € {1,...,T},are computed using
the following equation.

W =QK" (15)

where W € RT*T and KT denotes the transpose of K. The

similarity scores in W are converted to probability values using

the Softmax operation defined as

exp (19

Z]T ~y expW (i)
The final attention output is defined as the linear combination

of the rows of V' with weights in Softmax(W).

A = Softmax(W)V

Softmax(W)(i, j) = (16)

a7)

In self-attention, K, V', and @ are computed from the same
sequence. One of the approaches to self-attention is to use three
linear projections of a given input, X € RT*¥ to obtain K,V
and @, and then applying (15)—(17) to obtain the attention
output.

A block diagram of the attention block in ARN is shown in
Fig. 3. It comprises three trainable vectors {q, k, v} € RV*!
anditsinputsare {Q,V,K} € RT*N Letq,, v¢, and k; denote
the t*" row in Q, V/, and K respectively, and they are refined
using gating mechanisms in the following equations.

ki, =k ©o(k) (18)
q; = Lin(q:) © o(q) (19)
v}, = v; ® [o(Lin(v)) ® Tanh(Lin(v))] (20)
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Fig. 5. Proposed ARN for time-domain speech enhancement.

where o is sigmoidal nonlinearity, and Lin() is a linear layer.
Note that o(Lin(v)) ® Tanh(Lin(v)) represents a constant vec-
tor computed from v. This operation is used during training only
for better optimization of v. For evaluation, we use its value from
the best model at training completion.

The final output of the attention block is computed as

, Q/K/T
W' = 21
VN @y
A = Softmax(W')V' (22)

D. Feedforward Block

The feedforward block in ARN is shown in Fig. 4. A given
input of size N is projected to size 4~ N using a linear layer,
which is followed by Gaussian error linear unit (GELU) [50]
and a dropout layer [51]. Finally, the output of size 4™ NV is split
into four vectors of size IV, which are added together to get the
final output.

With the building blocks described, we now present the pro-
cessing flow of ARN shown in Fig. 1. The input to ARN is first
normalized and then processed using an RNN. The output of the
RNN is normalized using two parallel layer normalizations. The
first stream is used as Q and the second stream is used as K and
V for the following attention block. The output of the attention
block is added to @ to form a residual connection. Again, the
output is normalized using two parallel layer normalizations.
The first stream is processed using a feedforward block and the
second stream is added to the output of the feedforward block
to form a residual connection.

IV. ARN FOR TIME-DOMAIN SPEECH ENHANCEMENT

The proposed ARN for time-domain speech enhancement is
shown in Fig. 5. Given an input signal o with M samples, it
is first chunked into overlapping frames with a frame size of L
and frame shift of J to obtain 7" frames. Next, all the frames
are projected to a representation of size N using a linear layer,
which is then processed using four ARNs. We use four-layered
ARN as a simple extension of the four-layered RNN for complex
spectral mapping in [22]. A linear layer at the output projects
the output of the last ARN to size L. Finally, overlap-and-add
(OLA) is used to obtain the enhanced waveform.
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A. Non-Causal Speech Enhancement

For non-causal speech enhancement, we use BLSTM RNN
inside ARN. A BLSTM comprises two LSTMs; a forward
and a backward LSTM. The forward LSTM operates over the
sequence in the original order, whereas the backward LSTM
operates over the sequence in the reverse order. Let Xk and %
denote the sequence in the original and reverse order respec-
tively. Then, we have

%, = (23)
T, =xr (24)

The hidden state at time ¢ for a BLSTM is given as
(R ) = [LSTM(X),, LSTM, (X)) (25)

where [a7 b] denotes a concatenation of vectors a and b, and
LSTMy and LSTM, represent the forward and the backward
LSTM.

B. Causal Speech Enhancement

For causal speech enhancement, we use LSTM RNN and
causal attention inside ARN. Causal attention is implemented by
applying a mask to W' where entries above the main diagonal
are set to negative infinity so that the contribution from future
frames in (22) becomes zero. The causal attention is defines as

Acausal = Softmax(Mask(W')) V' (26)
where
Wi ). ifi <
Mask(W')(i, ) —{ (ig), dfi<y 7)
—00, otherwise
V. EXPERIMENTAL SETTINGS
A. Datasets

We evaluate all the models in a speaker, noise, and corpus
independent way. We use all utterances from the training set
of LibriSpeech corpus [52] to generate training mixtures. It
consists of around 280 K speech utterances of more than 2000
speakers. LibriSpeech has been shown to be an effective corpus
for cross-corpus generalization because it is recorded by many
volunteers across the globe, and hence consists of utterances
recorded in different acoustic conditions. Noisy training utter-
ances are generated in an online fashion during training in the
following way. For each sample in a given batch, we randomly
sample a speech utterance, extract a random chunk of 4 seconds
from it, and add a random chunk of noise to it at a random
SNR from {—5,—4,—3,—2,—1,0} dB. The sampled speech
is used unaltered if its duration is smaller than 4 seconds. A
set of 10000 non-speech sounds from a sound effect library
(www.sound-ideas.com) are used as the training noises.

All the models are evaluated on three different corpora:
WSIJ-SI-84 (WSJ) [53], TIMIT [54], and IEEE [55], which
are not used during training. We use utterances of one male
speaker and one female speaker from IEEE to further categorize
IEEE as IEEE Male and IEEE Female to show potential gender
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effects. The WSJ test set consists of 150 utterances of 6 different
speakers. The TIMIT test set consists of 192 utterances in the
core test set. IEEE Male and IEEE Female each consists of 144
randomly selected utterances. We generate noisy utterances us-
ing four different types of noises: babble, cafeteria, factory, and
engine, none of which are used during training. Test utterances
are generated at 6 different SNRs of —5, —2, 0,2, and 5 dB. We
find corpus fitting to be a severe issue for the difficult noises of
babble and cafeteria, and at low SNRs of —5 dB and —2 dB.
Therefore, for the sake of the brevity, we report results only for
babble and cafeteria noises at SNRs of —5 dB and —2 dB. We
observe similar performance trends for the other noises and SNR
conditions. Note that our test set is the same as the one previously
used in [37] and [22]. Babble and cafeteria noises are taken from
an Auditec CD (available at http://www.auditec.com). Factory
and engine noises are taken from the Noisex dataset [56]. We
use WSJ test utterances mixed with babble noise at the SNR of
—5 dB as the validation set.

We find our IEEE Male and IEEE Female test set to be
relatively challenging in terms of improving the intelligibility
and quality of unprocessed mixtures. In particular, IEEE utter-
ances mixed with babble and cafeteria noises at SNRs of —5
dB and —2 dB are very difficult. Therefore, we provide online
IEEE Male and IEEE Female utterances mixed with babble
and cafeteria noises at SNRs of —5 dB and —2 dB as a useful
test set for evaluating future algorithms and facilitating direct
comparisons. It can be downloaded at https://web.cse.ohio-
state.edu/~wang.77/pnl/corpus/Pandey/NoisyI[EEE.html.

In addition we investigate the proposed model for speech
quality improvement in relatively high SNR conditions. We train
ARN on the VCTK dataset [57] and compare it with a number
of existing models evaluated on this task. The VCTK training
set consists of utterances from 28 speakers mixed with different
noises at SNRs of 0, 5, 10 and 15 dB. We exclude two speakers
(p274 and p282) from the training set to create a validation set.
The test set comprises utterances from two unseen speakers (not
in the training set) mixed with different noises at 2.5, 7.5, 12.5,
and 17.5 dB. We store training speech and noises separately
and dynamically mix them during training using random SNRs
from {0, 5,10, 15} dB. The same SNR values are used as in the
original training set. The dynamic mixing provides a measure
of data augmentation, as similarly done in [58].

We also evaluate our model on real recordings. We utilize the
blind test set from the second deep noise suppression (DNS)
challenge [59], which consists of 650 real recordings and 50
synthetic mixtures. This test set is divided into five classes of
English, non-English, tonal, singing, and emotional speech. To
create a training set, we use speech and noises from the third
DNS challenge [60]. We remove low quality utterances from
all classes using appropriate thresholds on provided parame-
ter T60_W B. We use room impulse responses (RIRs) with
T60_W B between 0.3 and 0.9. The final training set consists
of 347 K speech utterances, 65 K noises, and 47 K RIRs. We
generate training mixtures dynamically by convolving a speech
signal with a random RIR and adding a random noise segment.
We add room reverberation with a probability of 0.5. When using
an RIR, the training target is set to be the clean speech convolved
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with the first 50 ms of the RIR. We sample a SNR value uniformly
from either {—5,—4,...,—1,0} dB or from {1,2,...,19,20}
dB with a probability of 0.5.

B. System Setup

All the utterances are resampled to 16 kHz, and leading and
trailing silences are removed from training utterances. Each
noisy mixture is normalized using root mean square (RMS)
normalization and the corresponding clean utterance is scaled
accordingly to maintain an SNR.

Parameter N is set to 1024, input frame size is set to 32 ms
for causal system and 16 ms for non-causal system, and output
frame size is set to 16 ms. For ARN with BLSTM, N = 1024
results in a hidden state size of 512 in both forward and backward
LSTM. A dropout rate of 5% is used in the feedforward block of
ARN. We use the utterance level MSE (mean squared error)
loss in the time domain for training on Librispeech and the
PCM (phase constrained magnitude) loss [32] for training on
VCTK and DNS. The MSE loss is defined in the time domain as
follows

1 M-1
Latsp(s,8) = 57 > (slk] - 5[K]) (28)
k=0

The PCM loss is defined in the T-F domain that measures the
distance between clean and estimated magnitude spectrum of
both speech and noise. It is defined using the following set of
equations.

n=x-—38 (29)
1 T—-1F-1
Lsae(s,8) = s 3 11, £)] + 1i(t, )
t=0 f=0
— (18t O +1Sit, HD)] (30)
=R 1 . 1 .
Lpcenm(s,s) = 3 Lsn(s,s) + 3 -Lsu(n,n) (€1))

where S and § respectively denote STFTs of s and 8, T is the
number of time frames, and F' is the number of frequency bins.

The Adam optimizer [61] is used for training. A batch size of
32 utterances is used on Librispeech and DNS and that of 8 on
VCTK. Models are trained for 100 epochs on Librispeech, 84
epochs on DNS, and 200 epochs on VCTK. A constant learning
rate of 0.0002 is used for the first 33 (28 for DNS) epochs, after
which it is exponentially decayed using a scale that results in a
learning rate of 0.00002 in the final epoch. During training, we
evaluate a given model on the validation set every two epochs,
and the model parameters corresponding to the best SNR are
chosen for evaluation.

We develop all the models in PyTorch [62] and exploit au-
tomatic mixed precision training to expedite training [63]. Two
NVIDIA Volta V100 32 GB GPUs are required to train ARN
with a batch size of 32 utterances. A given batch is equally
distributed to two GPUs using PyTorch’s DataParallel module.
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C. Baseline Models

We train five different models as the baselines for comparing
corpus-independent models trained on Librispeech. First, we
train a recently proposed deep complex convolutional recurrent
network (DCCRN) [17], which respectively won the first and
the second place in real-time and non-real-time track of the first
DNS challenge [64]. DCCRN uses noisy complex spectrum as
the input and the complex ideal ratio mask (cIRM) as the training
target. Next, we train two RNN-based models; RNN-IRM [37]
and RNN-TCS [22]. RNN-IRM uses log spectral magnitude as
the input feature and the IRM as the training target. RNN-TCS
uses noisy complex spectrum as the input feature and the target
complex spectrum (TCS) as the training target. Finally, we train
two recently proposed time-domain networks; dense convolu-
tional network with self-attention (DCN) [32] and dual-path
ARN (DPARN) [34]. Even though DCN and DPARN obtain
good enhancement in the time domain, they have not been
trained and evaluated in a corpus-independent way.

The ARN model trained on VCTK is compared with a number
of existing methods that report performance on the same dataset
(see Table III). The ARN model trained on the DNS challenge
dataset is compared with a baseline noise suppression network
(NSNet) provided with the third DNS challenge [60].

D. Evaluation Metrics

We use short-time objective intelligibility (STOI) [35]
and narrow-band perceptual evaluation of speech quality
(PESQ) [65] as evaluation metrics for comparing models trained
on Librispeech. STOI has a typical range of [0, 1], which roughly
represents percent correct. PESQ has a range of [—0.5,4.5],
where higher scores denote better speech quality. Both metrics
are commonly used for evaluating speech enhancement algo-
rithms. For evaluating the models trained on VCTK, we use
three metrics: composite scores [1], wide-band PESQ and STOI.
Composite scores include three components: CSIG, CBAK and
COVL, respectively measuring enhanced speech quality, noise
removal and overall quality. For evaluation on the blind test
set, we use a recently proposed non-intrusive quality metric,
DNSMOS P.835, that highly correlates with subjective qual-
ity scores collected with the P.835 standard [66]. Similar to
the composite scores, it has three components: DNSMOS-
SIG, DNSMOS-BAK, and DNSMOS-OVL, respectively mea-
suring enhanced speech quality, noise removal and overall
quality.

VI. RESULTS AND DISCUSSIONS
A. Learning Curves

First, we plot performance curves of ARN training on Lib-
rispeech with MSE loss. Fig. 6 plots on the validation set the
MSE loss every epoch, and STOI, PESQ, and SNR scores every
other epoch. We can observe that, for both causal and non-causal
models, training progresses smoothly and converges at the end
with minimal improvements in last 10 epochs.
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TABLE I
COMPARING NON-CAUSAL ARN WITH OTHER NON-CAUSAL APPROACHES TO SPEECH ENHANCEMENT

Test Noise Babble Cafeteria

Test Corpus WSJ TIMIT [ IEEE Male [IEEE Female WSJ TIMIT [ IEEE Male [IEEE Female
Test SNR -5dB -2dB|-5dB -2dB[-5dB -2dB|-5dB -2dB|-5dB -2dB[-5dB -2dB[-5dB -2dB|-5dB -2dB
Mixture 58.6 655|540 609|550 623555 629 [574 645|531 60.1 548 609|551 620
DCCRN 825 89.0 [73.1 825[683 813|725 846 |81.4 876|748 826|720 803|774 86.0

S RNN-IRM [37]| 83.7 884 | 76.3 833|757 841|760 856|819 869|763 823|745 815|788 853
~ | RNN-TCS [22]| 88.1 92.2 | 79.3 87.5|76.7 858 |80.0 89.2 |858 903|804 86.6| 773 84.1|82.6 88.7
9 DCN 87.1 915|779 86.1 |739 843 |76.6 87.7 |849 89.7| 787 854|756 833|797 874
2 DPARN 90.5 936|829 89.6|784 874|842 91.1 | 875 914 |81.8 880|787 855|832 895
ARN 91.1 94.1 | 845 90.6 | 82.3 889 | 856 92.0 | 88.3 92.1 | 82.7 88.6 | 80.6 86.6 | 853 90.5
Mixture 1.54 1.69 | 146 1.63 | 145 1.63 | 1.12 132 | 1.44 1.64 | 1.33 152 | 1.37 1.54 | 1.01 1.20
DCCRN 231 265|199 238|186 233|179 233 [232 261|212 239|208 240|214 250
RNN-IRM 251 282 (227 260|215 254|200 251 249 276|231 257|221 251|222 257

g RNN-TCS 263 289|222 259|220 259|218 262|252 276|226 253|227 259|234 265
o DCN 256 285|214 250|209 250|197 249 | 246 274|219 248|219 253|218 257
DPARN 2775 297 | 235 269|227 269|234 275|257 279|230 259|236 2.66|233 266

ARN 2.82 3.04 | 243 278 | 245 2.79 | 248 2.86 | 2.64 2.87 | 2.36 2.65 | 243 273|245 276

TABLE I
COMPARING CAUSAL ARN WITH OTHER CAUSAL APPROACHES TO SPEECH ENHANCEMENT
Test Noise Babble Cafeteria

Test Corpus WSJ TIMIT [ IEEE Male [IEEE Female WSJ TIMIT [ IEEE Male [IEEE Female
Test SNR -5dB -2dB|-5dB -2dB[-5dB -2dB|-5dB -2dB|-5dB -2dB[-5dB -2dB[-5dB -2dB|-5dB -2dB
Mixture 58.6 655|540 609|550 623555 629 [574 645|531 60.1 548 609|551 620
DCCRN 79.0 86.7 | 69.6 79.6 | 66.2 793 | 672 809 | 78.6 857 |71.6 802|689 780|734 834

8 RNN-IRM [37]| 80.7 86.5 | 72.5 80.5 | 72.3 81.6 | 70.6 820 | 77.8 842 | 71.7 793 | 69.8 77.7 | 729 81.7
~|RNN-TCS [22]| 85.1 904 | 76.1 853 | 728 83.0 | 73.5 853 |822 832|762 840|724 805|774 858
9 DCN 837 89.2|73.0 823]69.6 80.7|69.6 827 |813 873|745 826|705 793|746 84.
2 DPARN 88.5 923|796 874|753 849|790 887 |81 900|790 859|746 825|798 878
ARN 883 924 | 80.2 88.1|77.7 859 | 80.1 89.2 | 847 90.0 | 79.0 86.0 | 75.5 83.0 | 80.3 87.8
Mixture 154 1.69 | 146 1.63 | 145 1.63 | 1.12 132 | 144 164|133 152|137 154|101 1.20
DCCRN 214 247 | 1.82 221|174 219|156 2.11 | 219 250 | 1.99 227|194 228|198 2.36
RNN-IRM 231 262|208 242|199 238|174 227 | 226 255|210 236|200 231|195 234

8 RNN-TCS 232 263|200 236|200 239|183 234|222 250|203 230|204 236|206 242
o DCN 232 261|194 228|185 227 | 1.67 218 | 224 252|199 228|194 226|192 234
DPARN 251 276 | 212 247|206 248|200 250 | 235 261|213 241|212 244|211 252

ARN 250 278 | 215 2.52 | 216 253|210 256 | 234 262|212 239|214 245|217 2.51

SsTOI

60 80 100 0
— Causal —— Non-causal

Fig. 6. Learning curves for ARN training on Librispeech with MSE Loss. We
plot MSE loss, and STOI, PESQ, and SNR scores on the validation set.

B. RNN vs. ARN

Now, we illustrate the effectiveness of self-attention for
speech enhancement. Fig. 7 plots average STOI and PESQ
scores over babble and cafeteria noises for the four test corpora
and at 2 SNR conditions. The vertical bars at the top of the
plots indicate 95% confidence interval. We can observe that
adding the proposed attention mechanism after each layer in

RNN leads to significant improvements for all the test condi-
tions. This suggests that self-attention is an effective mecha-
nism for improving cross-corpus generalization of RNN-based
speech enhancement. Note that improvements in cross-corpus
generalization due to self-attention is not necessarily achieved
in all architectures, as we find that DCN [32], a dense con-
volutional network with self-attention, fails to obtain similar
improvements on untrained corpora (see Table I and Table II
later).

C. Attention Mechanisms

We compare two different attention mechanisms for ARN in
causal and non-causal settings. Comparison results are plotted
in Fig. 8. The first mechanism, denoted as Al, is the attention
mechanism described in Section III-C. The second mechanism,
denoted as A2, is borrowed from [38], where we use one encoder
layer without positional embeddings. We explore single-headed
and 8-headed attention for this mechanism, which are respec-
tively denoted as A2-1 and A2-8. We can observe that all the
three attention mechanisms obtain statistically similar objective
scores for both causal and non-causal speech enhancement. This
suggests that even though self-attention is an effective technique
for speech enhancement, changing the attention mechanism in
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TABLE III
COMPARING MSE L0Ss AND PCM Loss AT SNRS OF —5 DB AND 5 DB.
A) NON-CAUSAL, B) CAUSAL

[Test Corpus| ~ WSJ | TIMIT [IEEE Male [IEEE Female|
[ Test SNR [-5dB 5 dB|-5dB 5dB|-5dB 5dB|-5dB 5dB |

Noisy 58.6 812|540 77.1|550 794|555 803
@) MSE 91.1 97.1|845 96.1]823 956|856 96.8

PCM 92.0 97.6 | 84.9 96.7| 81.5 959| 848 97.2
(b) MSE 883 96.6]80.2 953|777 94.6] 80.1 96.1

PCM 88.8 97.1| 804 959 77.7 949| 784 96.5
Noisy 154 212|146 208[ 145 206 1.12 1.86
MSE 282 336|243 331|245 331|248 336
PCM 298 3.57| 252 348|241 340|247 3.57
(b) MSE 250 325|215 3.13[216 3.14|2.10 3.18

PCM 2.57 342|214 327|208 320|199 3.37
Noisy 50 50]-50 50[-50 50]-50 50

STOI (%)

Babble
PESQ
&

% o | MSE [109 17.2[ 89 163] 75 16| 8.1 160
g PCM | 109 172| 88 163| 67 14.6| 7.5 161
%oy MSE |91 16672 I55[ 53 B39[ 58 153

PCM | 9.1 166| 72 156| 53 138| 51 153
— Noisy | 574 812|530 762|548 770] 551 734
S MSE [ 883 064827 95.1]80.6 940] 853 959
5| @] oM | 890 969|840 958|810 944 86.1 96.4
S [ | MSE [847 957/ 790 940|755 926[ 803 951

PCM | 852 962|794 947|752 929|803 957

Noisy 144 2.12] 133 202|137 198] 1.01 1.79
@ MSE 264 326|236 320[243 322|245 320
PCM 2.76 3.47|2.50 3.36| 243 3.29| 2.56 3.44
(b) MSE 234 314|212 299|214 3.02|217 3.03
PCM 2.38 331|212 313|202 3.09| 216 3.24
Noisy 50 50 [-50 50]-50 50([-50 5.0
@ MSE 96 162] 9.0 159 72 142| 84 159
PCM 95 161] 9.0 16.0| 7.1 143| 84 159
(b) MSE 81 156 77 153| 58 135] 69 154
PCM 82 156| 78 153| 56 135| 6.8 155

Cafeteria
PESQ
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anisms.

Number of trainable parameters in ARN for different attention mech-

ARN does not lead to statistically significant changes in the
enhancement performance.

Next, in Fig. 9, we plot the number of parameters in ARN for
the two attention mechanisms. We can see that there is a dramatic
increase in the number of parameters when adding attention to
an RNN-only network. However, the increase in the number of
parameters due to Al is roughly half of that due to A2. Also, we
find A1 to be faster than A2 in both training and evaluation. As
aresult, we select Al as the default attention mechanism in the
remaining model comparisons.

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on December 04,2022 at 00:10:58 UTC from IEEE Xplore. Restrictions apply.



1382

WsJ TIMIT IEEE Male |IEEE Female
92
90
S8
é 86
w84
82
29
28
% 27
Wae
25
24

" RNN ARN RNN ARN RNN ARN RNN ARN

Model Model Model Model
(@
WsJ TIMIT IEEE Male |IEEE Female

=

STOI (%)
J3288398
I

RNN ARN RNN ARN

Model

RNN ARN
Model

RNN ARN

Model Model

(b)

N \WAVE \

\:} TCS

Fig.10. Comparing complex spectral mapping and time-domain enhancement
for RNN and ARN. TCS stands for target complex spectrum and WAVE for
waveform, which are respectively used as the training targets for complex
spectral mapping and time-domain enhancement. a) Non-causal, b) causal.

D. Complex Spectral Mapping vs. Time-Domain Enhancement

We evaluate RNN and ARN for both complex spectral
mapping and time-domain speech enhancement. For complex
spectral mapping, the input is the noisy STFT and the output is
the estimated clean STFT. The real and the imaginary part of the
STFT are concatenated together to obtain real-valued vectors.
For time-domain enhancement, the input is the frames of the
noisy speech and the output is the frames of the estimated clean
speech. Average STOI and PESQ for two test noises and at two
SNRs are plotted in Fig. 10. We can observe that time-domain
enhancement is better than complex spectral mapping for most
of the test cases; however, the performance difference is not
statistically significant. Similar trends are observed with RNN
and ARN for both causal and non-causal speech enhancement.
This suggests that, with training on a large corpus such as
LibriSpeech, complex spectral mapping and time-domain en-
hancement obtain similar results.

E. Frame Shift

Our previous studies in [37] and [22] suggest that a smaller
frame shift leads to better speech enhancement on untrained
corpora. As a result, a frame shift of 4 ms is proposed for
complex spectral mapping in [22]. In this work, we are able to
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Fig. 11.  Effects of frame shifts for RNN and ARN. a) Non-causal, b) causal.

further decrease the frame shift from 4 ms to 2 ms with the help
of automatic mixed precision training, which reduces memory
consumption by half and improves training time significantly.
Frame shifts of 4 ms and 2 ms are compared for RNN and
ARN in Fig. 11. We observe that, except for the causal ARN
at WSJ, a smaller frame shift leads to significant improvements
for most of the test conditions. Similar performance trends are
observed with RNN and ARN for both causal and non-causal
enhancement. This further strengthens the argument that using
a smaller frame shift is an effective technique for improving
cross-corpus generalization. Note that it was reported in [22]
that for a gated convolutional recurrent network (GCRN) [21],
a smaller frame shift does not always lead to better cross-corpus
generalization. It might be due to the fact that the receptive field
of a convolutional neural network is constant, and as a result,
reducing the frame shift leads to a reduction in the effective
receptive field.

F. Comparison With Baselines

Table I and Table II respectively report average STOI and
PESQ scores over babble and cafeteria noises for causal and
non-causal speech enhancement. First, we observe that DCCRN
has the lowest objective scores for both causal and non-causal
speech enhancement. This suggests that DCCRN is not effective
in low SNR conditions, especially for the challenging IEEE
corpus. Next, we observe that RNN-TCS is better than RNN-
IRM for non-causal speech enhancement. For causal speech
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TABLE IV
COMPARING ARN WITH BASELINE MODELS ON THE VCTK DATASET

PESQJSTOI (%) [ CSIG [CBAK[COVL [Causal?
Noisy 1.97 91.5 335 | 244 | 2.63 -
SEGAN [24] 2.16 - 348 | 294 | 2.80 X
Wave U-Net [67] 2.4 - 352 | 324 | 296 X
SEGAN-D [68] 2.39 - 346 | 3.11 | 3.50 X
MMSE-GAN [69] 2.53 93 380 | 3.12 | 3.14 X
Metric-GAN [70] 2.86 - 399 | 3.18 | 342 X
Metric-GAN+ [71] 3.15 - 4.14 | 3.16 | 3.64 X
DeepMMSE [72] 2.95 94 428 | 346 | 3.64 X
Koizumi 2020 [43] 2.99 - 415 | 342 | 3.57 X
HiFi-GAN [73] 2.84 - 4.18 | 2.55 | 3.51 X
T-GSA [42] 3.06 - 4.18 | 3.59 | 3.62 X
DEMUCS [58] 3.07 95 4.31 | 340 | 3.63 X
NC-ARN 3.21 |96 (95.7) | 442 | 3.63 | 3.83 X
Wiener 2.22 93 323 | 2.68 | 2.67 v
Deep Feature Loss [74] - - 3.86 | 3.33 | 3.22 v
DeepMMSE [72] 2.77 93 4.14 | 3.32 | 346 v
MHANet [44] 2.88 |94 (93.6) | 4.17 | 3.37 | 3.53 v
DEMUCS [58] 2.93 95 4.22 | 325 | 3.52 v
ARN 2.96 |95 (95.0) | 4.21 | 3.46 | 3.59 v

enhancement, RNN-TCS is better than RNN-IRM in terms of
STOI, but for PESQ, RNN-IRM has similar or better scores
for many test conditions. Further, we notice that DCN does not
obtain good scores on all the corpora. For many cases, DCN has
even worse scores than RNN-IRM, suggesting that DCN fails
to generalize to untrained corpora. Finally, we notice that even
though DPARN scores are worse than ARN, the difference is
less than 1% for STOI and less than 0.1 for PESQ in most of
the cases. For some cases, such as non-causal enhancement for
IEEE Male, DPARN is significantly worse than ARN.

In summary, using RNN with a smaller frame shift improves
cross-corpus generalization. Complex spectral mapping and
time-domain enhancement are comparable to each other but
better than ratio masking. Adding self-attention to RNN further
improves cross-corpus generalization. Although not comparable
to ARN, DPARN obtains good cross-corpus generalization.

G. Comparing Loss Functions

We compare two loss functions, MSE and PCM. This com-
parison is to establish the importance of the PCM loss for high
SNR enhancement. Results are given in Table III. We observe
that, at —5 dB, PCM is better than MSE for WSJ and TIMIT,
but similar to or worse than MSE for IEEE Male and Female. At
5 dB PCM is better than MSE for all test conditions. Moreover,
PESQ improvements are very significant for many cases. This
suggests that, even though PCM is not consistently better in
low SNR conditions, it is clearly a better loss function for high
SNR speech enhancement. Therefore, we use the PCM loss for
training models on VCTK and DNS challenge dataset, which
require evaluation in relatively high SNR conditions.

H. Evaluation on VCTK

We compare ARN trained on VCTK with baseline models in
Table IV. We can see that non-causal ARN is significantly better
than existing non-causal models. Causal ARN also obtains state-
of-the-art results. However, the difference between second-best
causal model and causal ARN is not as significant as between
the second-best non-causal model and non-causal ARN.
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TABLE V
EVALUATING ARN ON THE BLIND TEST SET OF THE SECOND DNS
CHALLENGE USING DNSMOS P.835

Singing | Tonal | Non-English | English | Emotional | Overall
v Noisy | 3.29 | 3.71 3.58 3.21 2.65 3.28
< | NSNet | 3.53 | 433 432 423 3.45 4.10
| ARN 3.70 | 4.39 4.45 4.46 3.54 4.27
o Noisy | 3.45 | 3.98 3.99 3.98 3.46 3.87
= | NSNet | 2.99 | 3.87 3.84 3.79 2.94 3.63
ARN 3.54 | 4.07 4.18 4.22 3.00 3.98
w | Noisy | 3.01 |3.42 3.40 3.27 2.75 3.23
% NSNet | 2.64 | 3.63 3.59 3.49 2.58 3.34
ARN 299 | 3.78 3.88 3.92 2.61 3.65

1. Evaluation on Real Recordings

Finally, we evaluate the causal ARN trained on the DNS chal-
lenge dataset on the blind test set of the second DNS challenge,
which consists of 650 real recordings and 50 synthetic mixtures.
Results are compared with a baseline NSNet in Table V. We
observe that ARN is substantially better than NSNet for all the
metrics and for all the speech classes. We also observe that ARN
is able to improve both DNSMOS-SIG and DNSMOS-BAK for
English, tonal, non-English and singing. For emotional speech,
however, we see a good improvement in DNSMOS-BAK but
reduction in DNSMOS-SIG. Overall, DNSMOS-OVR is sub-
stantially improved for all speech classes except for a slight
reduction in singing and emotional speech. This may be due to
very few training utterances for these two classes. Out of 347 K
training utterances, only 5 K belong to the emotional class and
only 2 K to the singing class.

VII. CONCLUDING REMARKS

In this study, we have proposed a novel ARN for time-domain
speech enhancement to improve cross-corpus generalization.
ARN comprises of RNN augmented with self-attention and feed-
forward blocks. We have trained ARN in a noise, speaker and
corpus independent way and performed comprehensive evalua-
tions on four untrained corpora for difficult nonstationary noises
atlow SNR conditions. Experimental results have demonstrated
the superiority of ARN over competitive algorithms, such as
RNN, DCCRN, DCN and DPARN.

We have found that RNN with a smaller frame shift, such
as 4 ms and 2 ms, is an effective technique for speech en-
hancement with improved cross-corpus generalization. Further,
we have revealed that although attention can obtain significant
improvements, the types of attention mechanism do not make a
big difference. We have also evaluated RNN and ARN for com-
plex spectral mapping and time-domain speech enhancement. A
key finding is that complex spectral mapping and time-domain
enhancement are similar to each other, but are significantly better
than ratio masking when trained on a large corpus. Further, we
have examined frame shifts of 4 ms and 2 ms and reported
significantly better results with 2 ms frame shift.

We have also trained ARN on the VCTK dataset for speech
quality improvement in relatively high SNR conditions and
obtained state-of-the-art results. Additionally, we have trained a
causal ARN to jointly perform dereverberation and denoising.
For this training, we utilized speech, noises, and RIRs from the
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DNS challenge dataset. The evaluation on a blind test set using
a non-intrusive quality metric demonstrates that ARN obtains
strong quality improvements for real recordings. This illustrates
that ARN is a highly effective and robust model for speech
enhancement.

In the future, we plan to perform listening tests of ARN on
IEEE utterances in low SNR conditions; IEEE sentences are
widely used in speech intelligibility evaluations. Additionally,
we plan to further investigate DPARN, as it is found to be effec-
tive for cross-corpus generalization. We have observed that the
architectures with larger numbers of parameters, such as RNN
and ARN, obtain better generalization compared to architectures
with fewer parameters, such as convolutional neural networks.
We plan to redesign DPARN architecture to expand its number
of parameters to be comparable to that of RNN.

Even though we have compared causal and non-causal ap-
proaches, we have not considered parameter efficiency and
computational complexity of models, as the primary goal of
this study is to improve cross-corpus generalization. ARN has
significantly larger number of parameters compared to DPARN
and DCN. A future research direction would be to optimize
ARN for real-world applications by using techniques such as
model compression and quantization [75]. A related research
direction s to explore DNN architectures that have fewer number
of parameters but provide good cross-corpus generalization.
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