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ABSTRACT

In this work, we propose a new model called triple-path attentive re-
current network (TPARN) for multichannel speech enhancement in
the time domain. TPARN extends a single-channel dual-path net-
work to a multichannel network by adding a third path along the
spatial dimension. First, TPARN processes speech signals from all
channels independently using a dual-path attentive recurrent network
(ARN), which is a recurrent neural network (RNN) augmented with
self-attention. Next, an ARN is introduced along the spatial di-
mension for spatial context aggregation. TPARN is designed as a
multiple-input and multiple-output architecture to enhance all input
channels simultaneously. Experimental results demonstrate the su-
periority of TPARN over existing state-of-the-art approaches.

Index Terms— multichannel, time-domain, MIMO, self-
attention, triple-path, fixed array

1. INTRODUCTION

Speech enhancement is concerned with improving the intelligibility
and quality of a speech signal degraded by noise and reverberation.
The most basic approach to speech enhancement is monaural pro-
cessing, where recordings from a single microphone are utilized [1].
Single-channel methods can obtain good enhancement, but are lim-
ited in capability to utilize only time-frequency (T-F) information.
Multichannel speech enhancement aims at utilizing both T-F and
spatial information by using recordings from multiple microphones
[2], [3].

Supervised speech enhancement using deep neural networks
(DNNs) represents the mainstream methodology for speech en-
hancement [4]. For multichannel processing, a popular approach
is to incorporate DNNs with traditional spatial filters, such as an
MVDR beamformer [5], [6]. A DNN is first used to estimate
second-order statistics of speech and noise which are then used for
computing beamformer weights. Another approach is to train a
DNN with spatial features, such as inter-channel time, phase or level
difference [7], [8]. A more recent trend is to use end-to-end super-
vised learning, where spatial information becomes an implicit part
of supervised learning [9], [10]. Wang et al. [10] proposed a dense
convolutional recurrent network (DCRN) for multi-microphone
complex spectral mapping, where real and imaginary components
of the clean spectrum are directly predicted from the multichannel
noisy spectrum. In [9], authors used inspiration from complex
beamforming to propose a novel channel-attention mechanism
inside a dense UNet.

Moreover, time-domain speech enhancement using DNNs has
also gained considerable attention in recent years [11]–[14]. Time

∗Work done during internship at Facebook Reality Labs Research.

domain networks directly map noisy speech samples to clean speech
samples, and as a result, feature extraction becomes an implicit part
of the learning process. Even though highly effective in remov-
ing additive interference, time-domain approaches have not yet been
established for removing room reverberation, a convolutive inter-
ference [15]. Time-domain networks have also been explored for
end-to-end multichannel speech enhancement [16]–[18], however
reported performances are far from satisfactory.

In this work, we propose a novel approach for end-to-end
time-domain multichannel speech enhancement. We refer to it as
TPARN: Triple-path Attentive Recurrent Network. The key idea
in the TPARN design is to extend a dual-path network [14] with
a third path along the spatial dimension. The audio input signals
from all channels are first divided into short chunks which are then
processed by the TPARN system in three stages. These three stages
for processing include: intra-chunk processing for local temporal
modeling, inter-chunk processing for global temporal modeling, and
inter-channel processing for spatial modeling.

Intra-chunk and inter-chunk processing are performed inde-
pendently for all the channels using a dual-path attentive recurrent
networks (ARN) [19], which are RNNs augmented with self-
attention [20], [21]. A combination of RNN and self-attention has
been proven to be effective for speech processing tasks [19], [21]–
[23]. The inter-channel processing introduced by us can be modeled
using different methods and we explore RNN, self-attention
network, and ARN along the spatial dimension. We find ARN to
be slightly superior compared to the other two. Besides, with an
explicit capability to capture spatial information through neural
network based inter-channel processing, our TPARN framework
has additional desirable characteristics. For example, TPARN
is designed as a multiple-input and multiple-output (MIMO)
architecture to enhance all input channels simultaneously. These
multi-channel outputs can be further processed by a downstream
system if needed. We train and evaluate TPARN on two different
datasets with varying degrees of reverberation and noise. We show
that TPARN obtains better results than state-of-the-art approaches
on both datasets. We also find performance improvements to be
more significant on a difficult dataset.

2. MODEL DESCRIPTION

2.1. Problem Definition

A multichannel noisy signal X = {x1, . . . ,xP } ∈ RP×N , where
P is the number of microphones and N is the number of samples, is
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modeled as

xp(n) = yp(n) + zp(n)

= dp(n) + rp(n) + zp(n)

= dp(n) + up(n)

(1)

where p = 1, 2 . . . P and n = 0, 1, . . . N − 1. xp represents noisy
signal at microphone p. y is the received speech including direct-
path speech d and reverberated speech r. z is the noise and u is
the overall interference including noise and reverberation. The goal
of multichannel speech enhancement is to get a close estimate d̂r of
the direct-path clean speech at a reference microphone r from X .

2.2. Triple-path Attentive Recurrent Network

The overall schema of the proposed TPARN architecture is shown in
Fig. 1. It consists of an input linear layer, four TPARN blocks, and
an output linear layer.

An input signal X ∈ RP×N is first converted into frames,
T = [X1, . . . ,XT ] ∈ RP×T×L, using a frame size of L samples
and frame shift of K. T is the total number of frames. The frames
in T are arranged into chunks with a chunk size of R and chunk shift
of S, leading the input being represented as C = [C1, . . .CC ] ∈
RP×C×R×L, where C is the number of chunks. Next, the frames
of size L in C are projected to D dimensions using the input linear
layer, which are then processed by a stack of 4 TPARN blocks. The
architecture of a TPARN block is shown in Fig. 2. The TPARN
blocks are densely connected. The input to TPARN blocks are 4d
tensors of shape P ×C×R×k ·D, which are obtained by concate-
nating the output from the linear layer encoder and the outputs from
preceding TPARN blocks. k ∈ {1, 2, 3, 4} denotes block id.

For k > 1, a linear layer is used at the input to project features of
size k ·D to D. Within a TPARN block, the inputs are processed us-
ing a stack of three ARNs: intra-chunk ARN, inter-chunk ARN and
inter-channel ARN. The intra-chunk ARN operates independently
over all chunks by rearranging its input to shape P · C × R × D,
and using an ARN that treats the first, second and third dimensions
as batch, sequence and feature dimensions respectively. Similarly,
the inter-chunk ARN combines all chunks together by rearranging
its input to shape P ·R× C ×D. The inter-channel ARN operates
along the channel dimension (spatial dimension) by rearranging its
input to shape R · C × P ×D. The sequence length and the batch
size for an utterance for different ARNs are given in Table 1.

Fig. 2 also depicts the architecture of an ARN which comprises
of a stack of three blocks, RNN block, attention block, and feedfor-
ward block. The architecture of the RNN block, the attention block
and the feedforward block is shown in Fig. 3. The input to RNN
block is normalized using two independent layer normalization lay-
ers. We use separate normalization to make sure that the network has
a capability to scale a given signal differently at different locations
inside the network.

The input to the attention block is layer-normalized using two
independent layer-normalization layers. The first layer-normalized
input is used as query, Q, and the second layer-normalized input is

Fig. 1. The proposed TPARN architecture for multichannel speech
enhancement.

Fig. 2. TPARN block.

Table 1. Input size to different ARNs for an utterance with C chunks.
Batch Size Seq. Length Feature Size

Intra-chunk ARN P · C R D
Inter-chunk ARN P ·R C D

Inter-channel ARN R · C P D

used as key K and value V for a following attention module. The
attention mechanism of the attention module, shown in Fig. 4, is
borrowed from [20] where its effectiveness with RNN for natural
language processing tasks has been demonstrated. Its effectiveness
for speech enhancement has also been established in [19], [21].

The attention module comprises three trainable vectors
{Q′,K′,V ′} ∈ R1×D , and its inputs are {Q,K,V } ∈ RB×U×D ,
where B is the batch size and U is the sequence length (see Table
1). Q,K, and V are refined using a gating mechanism given in the
following equation.

Kr = K � Sigm(K′)

Qr = Lin(Q)� Sigm(Q′)

Vr = V � [Sigm(Lin(V ′))� Tanh(Lin(V ′))]

(2)

where Sigm() is the sigmoidal nonlinearity, Lin() is a linear layer,
and � denotes elementwise multiplication. Q′,K′, and V ′

are broadcast to match the shape of Q,K, and V . Note that
Sigm(Lin(V ′)) � Tanh(Lin(V ′)) is a deterministic vector, and
hence this operation is used only during training to better optimize
V ′, and its final value is stored as a vector to use during evaluation.

The final output of the attention block is computed as

A = Softmax(
QrK

T
r√

D
)Vr (3)

The input to the feedforward block in ARN is layer-normalized
independently using two different layer normalization layers. The

Fig. 3. (a) RNN block, (b) Attention block, (c) Feedforward block.
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Fig. 4. Self-attention mechanism.

first layer-normalized input is projected to size 4D using a linear
layer followed by Gaussian error linear unit (GELU) nonlinearity
and a dropout with dropout rate Dr . Finally, it is projected back to
size D and added to the second layer-normalized input. Note that
we use dense connection in the RNN block and residual connections
in the attention and the feedforward block.

The output of the final TPARN block is projected to size L us-
ing the output linear layer. Next, chunks are combined together us-
ing chunk overlap-and-add (OLA) and then frames are combined
together using frame OLA to get an enhanced multichannel wave-
form. Note that TPARN is a MIMO architecture that enhances all
input channels simultaneously.

2.3. Loss Function

We use a recently proposed phase constrained magnitude (PCM) loss
[24] for training. The PCM loss was proposed to overcome an exist-
ing artifact issue with magnitude-based losses for time-domain net-
works. First, we compute an estimate of overall interference as

Û = X − D̂ (4)

Then, a magnitude-based loss is used between reference and esti-
mated speech and noise.

LPCM (D, D̂) = 1
2
· LSM (D, D̂) + 1

2
· LSM (U , Û)

(5)
LSM is defined as

LSM (D, D̂) =
1

P · T · F

P∑
p=0

T∑
t=1

F∑
f=1

|(|Dr
p(t, f)|+ |Di

p(t, f)|)

− (|D̂r
p(t, f)|+ |D̂i

p(t, f)|)|
(6)

where Dp is STFT of dp and Dr
p and Di

p respectively represent
the real and the imaginary component of Dp. T is the number of
frames and F is the number of frequency bins.

3. EXPERIMENTS

3.1. Datasets

We use two datasets for experiments. The first dataset is created
using speech from WSJCAM0 corpus [25] and noises from the RE-
VERB challenge [26]. This dataset uses a 4 microphones circular
array with a radius of 10 cm, T60 in the range [0.2, 1.2] seconds,
and direct speech-to-noise-ratio (SNR) in the range [5, 20] dB. More
details about this dataset can be found in [10].

Table 2. Comparison of Loss Functions for TPARN.
SI-SDR STOI PESQ

unproc. -3.8 70.9 1.63
MSE 10.1 95.7 3.07
PCM 10.4 96.9 3.42

Algorithm 1 DNS dataset spatialization process.

for split in {train, test, validation } do
for speech utterances in split do

• Draw room length and width from [5,10] m, and height from [3, 4]
m;

• Draw 1 array location and 1 speech source location;

• Get 4 uniformly placed mic locations on a circle of radius 10 cm
centered at array location;

• Draw Nns, number of noise sources, from [5, 10]

• Draw Nns noise locations in room

• Generate RIRs corresponding to speech source location and Nns

noise locations for mic locations in circular array

• Draw Nns noise utterances from noises in split

• Propagate speech and noise signals to mics by convolving with cor-
responding RIRs

• Draw a value snr from [-10, 10] dB, and add speech and noises at
each mic using a scale so that the overall direct speech SNR is snr;

end for
end for

We also create a more challenging dataset using speech and
noises from the DNS challenge 2020 corpus1 [27]. We select all
speakers with one chapter in the dataset and randomly select 90%
of speakers for training, 5% for validation, and 5% for evaluation.
After this, for each utterance a random chunk of a randomly sam-
pled length with an activity threshold (from script in [27]) greater
than 0.6 is extracted. The length of utterances are sampled from [3,
6] seconds for training and [3, 10] seconds for test and validation.
This results in a total of 53 k utterances for training, 2.6 k for vali-
dation, and 3.3 k for test. Next, all the noises from the DNS corpus
are randomly divided into training, validation and test noises in a
proportion similar to the number of speech utterances.

The algorithm to generate spatialized multichannel data from
DNS speech and noises is given in Algorithm 1. All the points inside
a room are sampled at least 0.5 m away from walls, and the distance
between array center and different sound sources is kept between
0.75 m and 2 m. We use Pyroomacoustics [28] with hybrid approach
where the image method with order 6 is used to model early reflec-
tions and ray-tracing is used to model the late reverberation. A sim-
ilar approach to data generation was used in [29].

3.2. Experimental settings

All the utterances are resampled to 16 kHz. We use P = 4, L =
16, K = 8, R = 126, S = 63, and D = 128 . For RNN, we
use bidirectional long short-term memory networks (BLSTMs) with
hidden size D in each direction. Dropout rate Dr in feedforward
blocks is set to 5%. We use phase constrained magnitude (PCM) loss
in Eq. (6) for training TPARN. All the models are trained for 100
epochs on 4 second long utterances randomly extracted from training

1https://github.com/microsoft/DNS-Challenge/
blob/master/LICENSE
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samples during training. A batch size of 8 is used. Automatic mixed
precision training is utilized for efficient training [30]. Learning rate
is initialized with 0.0004 and is dynamically scaled to half if the best
validation score does not improve in five consecutive epochs.

We compare TPARN with two recently proposed complex spec-
trum based end-to-end models; DCRN [10] and channel-attention
dense UNet (CA-DUNet)[9] . We also compare it with two time-
domain end-to-end models; residual speech denoising fully convo-
lutional network (rSDFCN) [17], and filter-and-sum network with
transform average and concatenate module (Fasnet TAC) [18].

All the models are compared using three enhancement objective
metrics: short-time objective intelligibility (STOI) [31], perceptual
evaluation of speech quality (PESQ) [32], and scale-invariant signal-
to-distortion ratio (SI-SDR). STOI scores are reported in percentage.

3.3. Experimental results

We begin by comparing time-domain mean squared error (MSE) loss
with spectral magnitude based PCM loss in Eq. (5). Results on WSJ-
CAM0 dataset using TPARN are reported in Table 2. We see that
even though MSE loss obtains good SI-SDR and STOI scores, it is
considerably worse in terms of PESQ. This also suggests that PCM
loss obtains bigger improvements for joint denoising and derever-
beration compared to denoising in [13]. We use PCM loss for the
rest of the experiments with TPARN.

Next, we explore the behavior of spatial (inter-channel) ARNs
at different locations inside a TPARN bloc: Pre - before intra-chunk
and inter-chunk ARN, Mid - between intra-chunk and inter-chunk
ARN, and Post - after inter-chunk and intra-chunk ARN. We also
experiment with three different configurations for spatial process-
ing: Attention - removing the RNN block from ARN, RNN - remov-
ing the attention block from ARN, and ARN. The results for different
models are summarized in Table 3. We see that for the WSJCAM0
dataset, different configurations of spatial ARN in TPARN block ob-
tain similar results. However, for the challenging DNS dataset, RNN
is considerably worse in comparison of Attention and ARN. More-
over, best scores are obtained at Pre location for Attention and at
Post location for ARN. These results indicate that RNNs are good
for spatial modeling but may not suffice in extreme conditions, as in
the DNS dataset.

Additionally, we perform an ablation experiment (not reported
here) on the number of spatial ARNs inside TAPRN by removing
spatial ARNs from TPARN blocks at different locations. We find
that a TPARN with 3 spatial ARNs in the first, second and the fourth
TPARN block obtains consistently better results for both datasets
and for different learning strategies, such as multiple-input and
single-output (MISO) and MIMO.

Finally, we compare best TPARN results with baseline models
in Table 4. We report single-input and single-output (SISO), MISO,
and MIMO results for DCRN and TPARN, and MISO results for the
rest of the models, as in their original studies. TPARN MIMO is con-
verted to MISO by averaging the output of the final TPARN block.
We notice a very interesting observation that TPARN-SISO is worse
than DCRN-SISO, but TPARN-MIMO and TPARN-MISO are better
than DCRN-MISO and DCRN-MIMO. This suggests that TPARN
exploits spatial information to a larger extent than in DCRN. Further,
DCRN-MIMO is worse than DCRN-MISO, but TPARN-MIMO is
slightly better than TPARN-MISO. This indicates that TPARN is
capable of MIMO learning without any performance degradation,
which provides additional advantage of enhancing all channels si-
multaneously with spatial cue preservation. Moreover, performance
improvements over the baseline models are even better for the dif-

Table 3. Comparisons between different spatial processing modules
at different locations in TPARN blocks.

Test Dataset WSJCAM0 DNS
Test Metric SI-SDR STOI PESQ SI-SDR STOI PESQ

Unproc. Loc. ↓ -3.8 70.9 1.38 -7.6 63.8 1.38

Attention
Pre 10.3 96.8 3.40 7.6 91.1 2.66
Mid 10.1 96.8 3.39 7.0 90.2 2.56
Post 10.2 96.8 3.40 6.9 90.2 2.56

RNN
Pre 10.3 96.8 3.40 6.9 90.0 2.55
Mid 10.3 96.9 3.44 7.1 90.4 2.59
Post 10.3 96.9 3.41 7.2 90.3 2.57

ARN
Pre 10.4 96.8 3.40 7.4 90.5 2.59
Mid 10.4 96.9 3.41 7.1 90.4 2.59
Post 10.4 96.9 3.42 7.8 91.1 2.65

Table 4. Comparisons with baseline models. WM: waveform map-
ping (time-domain), CRM: complex ratio masking. CSM: complex
spectral mapping.

Test Dataset WSJCAM0 DNS
Test Metric SI-SDR STOI PESQ SI-SDR STOI PESQ

Approach ↓ Unprocessed -3.8 70.9 1.38 -7.6 63.8 1.38
WM rSDFCN-MISO [17] 4.2 83.8 2.00 -2.2 68.5 1.49
CRM CA-DUNet-MISO [9] 10.7 96.0 2.88 3.5 83.3 1.99
WM Fasnet TAC-MISO [18] 8.2 94.7 2.93 4.7 86.5 2.26
CSM DCRN-SISO [10] 6.6 93.6 2.90 3.9 89.8 2.60
CSM DCRN-MISO [10] 9.4 96.5 3.31 4.6 90.1 2.57
CSM DCRN-MIMO [10] 8 .0 95.9 3.27 3.6 89.4 2.57
WM TPARN-SISO 5.1 93.6 2.92 3.0 84.1 2.14
WM TPARN-MISO 10.2 96.8 3.40 8.2 91.6 2.72
WM TPARN-MIMO 10.4 96.9 3.43 8.4 91.9 2.75

ficult DNS dataset. For example, TPARN is better by 3.8 dB in SI-
SDR, 1.9% in STOI and 0.12 in PESQ compared to the second best
DCRN-MISO. An exception in baseline models is CA-DUNet that
obtains impressive SI-SDR but drastically worse PESQ for WSJ-
CAM0.

4. CONCLUSIONS

We have proposed a novel triple-path attentive recurrent network for
multichannel speech enhancement in the time-domain. TPARN is
designed as a simple extension of a single-channel dual-path network
to multichannel network by adding a third-path along the spatial di-
mension. TPARN is a multiple-input and multiple-output (MIMO)
architecture that can simultaneously enhance signals at all micro-
phones. We have shown that TPARN obtains significantly better re-
sults than other state-of-the-art models in very noisy and reverberant
conditions. Future research includes exploring TPARN for ad-hoc
array processing and moving sources.
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