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ABSTRACT

In this work, we exploit speech enhancement for improving a re-
current neural network transducer (RNN-T) based ASR system. We
employ a dense convolutional recurrent network (DCRN) for complex
spectral mapping based speech enhancement, and find it helpful for
ASR in two ways: a data augmentation technique, and a preprocess-
ing frontend. In using it for ASR data augmentation, we exploit a
KL divergence based consistency loss that is computed between the
ASR outputs of original and enhanced utterances. In using speech
enhancement as an effective ASR frontend, we propose a three-step
training scheme based on model pretraining and feature selection.
We evaluate our proposed techniques on a challenging social media
English video dataset, and achieve an average relative improvement
of 11.2% with speech enhancement based data augmentation, 8.3%
with enhancement based preprocessing, and 13.4% when combining
both.

Index Terms— speech enhancement, speech recognition, recur-
rent neural network transducer, complex spectral mapping, consis-
tency loss

1. INTRODUCTION

Thus far we have seen a great deal of interest in automatic speech
recognition (ASR) technologies, e.g., transcribing social media videos
and enabling video captioning in both real-world high- and low-
resource scenarios [1, 2, 3, 4, 5]. End-to-end ASR models [6, 7,
8] - that use a single neural network to transduce audio into word
sequences - have been shown preferable in both (i) accuracy, i.e. as
top performing models in various benchmarks [3, 9], and (ii) training
process which enables single-step learning from scratch. Thus in this
work, we aim to exploit recurrent neural network transducer (RNN-T)
[6] for transcribing heterogeneous social media videos.

A series of past efforts have been focused on improving RNN-
T training, e.g., encoder and decoder pretraining [10, 11], training
optimization and criterion [12, 13], etc. However, background noise
and room reverberation in real world environment can still severely
degrade ASR performance [14, 15]. In practical settings, the most
popular approach to noise robust ASR is multi-channel speech en-
hancement that exploits spatial correlation between signals recorded
using different microphones [16, 17]. However, using multiple mi-
crophones is expensive and not always feasible. For example, social
media videos are generally recorded using single microphones.

Critical to the fact - why ASR systems based on single-channel
speech enhancement can only obtain limited performance improve-
ments - is mainly the observation that, processing artifacts introduced
by single channel speech enhancement can dominate the benefits

† Work was done when Ashutosh was an intern at Facebook.

obtained by noise reduction [18, 19]. Recently, Wang et al. [17]
proposed a complex spectral mapping based speech enhancement
system that shows significant ASR improvements via both single
channel and multi-channel speech enhancement. Similarly, Kinoshita
et al. [20] have shown that using a time-domain speech enhancement
can significantly improve ASR performance. Thus, presumably the
recent success in applying speech enhancement to ASR is attributed
to the joint enhancement of both magnitude and phase, which intro-
duces less distortions compared to the magnitude-only enhancement
systems.

Given the growing interest in RNN-T based ASR, to date little
attempt has been made to increase its noise robustness. Specially, to
our best knowledge, there is no pre-existing work that exploits single-
channel speech enhancement for improving RNN-T based ASR. Thus
in this work, we exploit a complex spectral mapping based speech
enhancement system toward this end. We use a dense convolutional
recurrent network (DCRN) as an enhancement model similar to [17].

First, we present that, by enhancing the ASR training data, speech
enhancement can work effectively as an ASR training data augmenta-
tion technique. We also note that when applying speech synthesis to
augmenting ASR training data in [21], promoting consistent predic-
tions in response to real and synthesized speech has been shown to
provide substantial ASR performance gains. Thus, similar to [21], we
also exploit a consistency criterion - an additional KL divergence loss
between the RNN-T outputs in response to original and enhanced
speech.

Secondly, we propose a multi (three)-step training scheme to
combine DCRN and RNN-T, where speech enhancement plays a key
role - as a preprocessing frontend - in facilitating ASR. First step is
to learn an RNN-T ASR model on original utterances while DCRN
on clean and noisy speech pairs. In step 2, initialize ASR model with
the RNN-T learned in 1st step, and perform RNN-T training on the
enhanced utterances generated by the learned DCRN. Finally, in step
3, DCRN and RNN-T are jointly fine-tuned with the ASR RNN-T
criterion.

Note that the processing artifacts resulted from speech enhance-
ment can make the enhanced speech suboptimal for subsequent ASR
modeling. We thus examine making a selective use of both original
and enhanced speech. We propose a trainable selection module that
learns to interpolate original and enhanced features. Specifically, the
selection module is trained via ASR criterion to output probability
scores in each time-frequency (T-F) bin, and the scores are used to
provide a weighted combination of original and enhanced features.

Lastly, to combine the proposed data augmentation and prepro-
cessing, we show that the RNN-T trained from data augmentation
can be further improved using steps 2 and 3 of the above three-step
training scheme. Meanwhile, we continue to exploit the KL diver-
gence based consistency criterion between the enhanced versions of
(i) the original speech and (ii) the original speech mixed with noise.
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We evaluate our proposed methods on a challenging task of
transcribing English social media videos. We achieve an average
relative word error rate reduction (WERR) of 11.2% when using
speech enhancement for data augmentation, 8.3% via preprocessing,
and 13.4% when combining the both.

The rest of the paper is organized as follows. Section 2 describes
the proposed techniques in this study. Experimental settings, results
and comparisons are discussed in Section 3. Section 4 concludes the
paper.

2. MODELING APPROACHES

The proposed system in this study has two components: RNN-T
for ASR and DCRN for speech enhancement. In this section, we
first briefly describe RNN-T based ASR and then complex spectral
mapping based speech enhancement. Next, we provide a detailed
description of the proposed DCRN and its dual application for ASR.

2.1. RNN-T

A speech utterance can be represented as an acoustic feature vector
sequence a = (a1 . . .aT ), where at ∈ Rd and T is the number
of frames in a. Similarly, denoting a grapheme set or a wordpiece
inventory as Y , a transcription can be represented as a sequence
y = (y1 . . . yU ) of length U , where yu ∈ Y . ASR can be formulated
as a sequence-to-sequence problem where input sequence is a, and
output sequence is y corresponding to its transcription. We define Ȳ
as Y ∪ {∅}, where ∅ is the blank label.

An RNN-T model parameterizes the alignment probability using
an encoder network (i.e. transcription network in [6]), a prediction
network and a joint network. The encoder performs a mapping
operation, denoted as f enc, which converts a into an another sequence
of representations henc = (henc

1 . . .henc
T ):

henc = f enc(a) (1)

A prediction network f pred, based on RNN or its variants, takes as
input both its state vector and the previous non-blank output label
yu−1 predicted by the model, to produce the new representation hpre

u

as
hpred
1:u = f pred(y0:(u−1)) (2)

where u is output label index and y0 is the blank label. The joint
network f join is a feed-forward network that combines encoder output
henc
t and prediction network output hpre

u to compute logits zt,u as

zt,u = f join(henc
t ,hpred

u ) (3)

P (yu|x1:t, y1:(u−1)) = Softmax(zt,u) (4)

such that the logits go through Softmax function and produce a poste-
rior distribution of the next output label over Ȳ . Finally, an RNN-T
loss is computed using the negative log posterior

LRNN-T(θ) = − logP (y|a) (5)

where θ denotes the model parameters. Note that the encoder is seen
as an acoustic model, and the combination of prediction and joint
network is interpreted as a decoder.

Specifically in this work, we use an RNN-T architectures shown
in Figure 1, which consists of a 5-layer BLSTM encoder and 2-layer
LSTM decoder. The joint network combines the encoder and decoder
outputs using linear layers as:

zt,u = Linear(Tanh(Linear(henc
t ) + Linear(hpred

u ))) (6)

Fig. 1. The RNN-T ASR architecture used in this study.

2.2. Speech Enhancement Using Complex Spectral Mapping

Given a clean speech signal s and a noise signal n, noisy speech
signal x is defined as

x = s + n (7)

where {x, s,n} ∈ RM×1, and M is the number of samples.
The objective of speech enhancement is to get a close estimate ŝ of s
given x. In short-time Fourier transform (STFT) domain, we get

X = S + N (8)

where {X,Y ,N} ∈ CT×F , T is the number of frames and F is
the number of frequency bins. In Cartesian coordinates, a complex-
valued STFT, such as X , is represented as

X = <(X) + i · =(X) (9)

where <(X) and =(X) respectively are the real and the imaginary
components of X . In complex spectral mapping, a real-valued DNN
is employed to jointly predict the real and the imaginary components
of S from the real and the imaginary components of X .

[<(Ŝ),=(Ŝ)] = Mφ([<(X),=(X)]) (10)

where Mφ denotes a speech enhancement model parameterized by φ.
Real and imaginary components are concatenated along the frequency
dimension when processed using LSTMs or linear layers [22, 23, 24]
and stacked to form the channel dimension when processed using
convolutional layers [25, 26].

Finally, inverse STFT (ISTFT) is used to get the enhanced wave-
form.

ŝ = ISTFT(Ŝ) = ISTFT(<(Ŝ) + i · =(Ŝ)) (11)

Next, we describe DCRN used in this study for complex spectral
mapping.

2.3. Dense Convolutional Recurrent Network

The proposed DCRN architecture is shown in Fig. 2. It is a 1D
UNet architecture similar to [17], which was proposed for robust
ASR using single and multichannel speech enhancement. It consists
of an encoder for downsampling, a decoder for upsampling, and
two BLSTM layers between the encoder and the decoder for context
aggregation over sequence of frames. Outputs from encoder layers
are concatenated to the outputs from corresponding symmetric layers



Fig. 2. The proposed DCRN model for complex spectral mapping.

in decoder (along the channel axis). Downsampling in encoder is
performed using convolutions with a stride of 2 along the frequency
dimension, and upsampling in decoder is performed by using sub-
pixel convolutions as in [27].

Additionally, five layers in the encoder and five layers in the
decoder are followed by a dense block. The dense block consists of
five convolutional layers in which the input to a given layer is the
concatenation of the outputs from all the previous layers in the block.
The number of output channels after each convolution in a dense
block is same as the number of channels in the input of dense block.

The input to DCRN is X of shape [BatchSize, 2, T, F ] and
output is Ŝ of shape [BatchSize, 2, T, F ], where the real and the
imaginary parts are stacked to form the channel axis. All the convolu-
tions use filters of size 3× 3 except at the input and the output, which
use filters of size 5× 5. BLSTM layers use state size of 512 in both
directions. The number of channels and the number of frequency bins
in the outputs of the successive layers in the encoder and the decoder
are (2, 257) (input), (32, 128), (32, 64), (32, 32), (32, 16), (64, 8),
(128, 4), (256, 2), (512, 1), (256, 2), (128, 4), (64, 8), (32, 16),
(32, 32), (32, 64), (32, 128), (2, 257) (output).

2.4. Dual Application of DCRN

We explore speech enhancement using DCRN as a data augmentation
technique and as a preprocessing frontend. Next, we describe these
two techniques.

2.4.1. Data augmentation

Given an ASR data set D consisting of speech signal and target se-
quence pairs {sk,yk} where k = 1, 2, . . . , N , and N is the number
of data samples. We can obtain different versions of sk for training
in the following manner.

s1 = s (12)

s2 = s + n (13)

s3 = ŝ = Mφ(s) (14)

s4 = ŝ2 = Mφ(s + n) (15)

where n is a noise signal added online during training, and we have
dropped subscript k for convenience. An ASR system can be trained
on original speech s1, speech with noise s2, enhanced speech s3,

and enhanced version of speech with additive noise s4. Note that
original speech in the social media dataset used in this study includes
background noise, and we further add noise to it for noise based data
augmentation.

Further, since s1, s2, s3, and s4 are different versions of a speech,
we can use a KL divergence based consistency loss between their
corresponding ASR outputs to make ASR model invariant to these
variations. A similar idea of KL loss was used for speech synthesis
based data augmentation in [21]. Given a pair {si, sj}, we define
KL divergence loss as following

LKL(si, sj) =
1

T

T∑
t=1

[DKL(P (yt|si)‖P (yt|sj))

+DKL(P (yt|sj)‖P (yt|si))]

(16)

Note that RNN-T training computes each output posterior over both
time index t and label index u as in Eq. 4, and we average the KL
loss across label indices, while omitting the label index u in Eq. 16
for clarity.

Thus the total training loss is defined as

L(si, sj) = 0.5 · logP (y|si) + 0.5 · logP (y|sj)

+ λauxLKL(si, sj)
(17)

where λaux is a hyperparameter determined using validation set. An
illustrative diagram to compute KL loss between pair s1 and s3 is
shown in Fig. 3.

Fig. 3. An illustrative diagram of the KL divergence loss computation
for pair {s1, s3}.



2.4.2. Preprocessing

For preprocessing, RNN-T is evaluated over test utterances enhanced
using DCRN. We find that training RNN-T using enhanced utterance
does not obtain better results. Instead, we train RNN-T with DCRN
in three steps. First, RNN-T is trained using original utterances to
get the baseline model, and DCRN is trained for speech enhancement
using pairs of clean and noisy speech. Next, RNN-T is trained on
enhanced utterances initialized using parameters from the baseline
model. Finally, RNN-T and DCRN are jointly trained using a smaller
learning rate. A schematic diagram of the three steps of RNN-T
training with DCRN is given in Fig. 4.

Fig. 4. Three-step training of RNN-T and DCRN.

2.4.3. Selection Module

Speech enhancement generally introduces processing artifacts that
can outweigh the gain obtained from noise reduction. We propose a
trainable selection module that can learn to select between enhanced
and original features to improve ASR performance. A schematic
diagram of selection module is shown in Fig. 5. It outputs a proba-
bility value, p(t, f) for each time-frequency bin that represents the
reliability of original features for ASR. We use 1 − p(t, f) as the
reliability score of enhanced features for ASR. The final acoustic
feature, ā, is computed as

ā(t, f) = p(t, f) · a(t, f) + (1− p(t, f)) · â(t, f) (18)

Selection module uses a linear layer with 128 hidden units at the
input, which is followed by 2 BLSTM layers with state size 128 in
both directions, and a linear layer at the output. To train selection
module, we utilize pre-trained DCRN and RNN-T. First, DCRN and
RNN-T are fixed to only train selection module using ASR loss. Next,
RNN-T and selection module are jointly trained with fixed DCRN
using a smaller learning rate.

Fig. 5. The proposed selection module.

3. EXPERIMENTS

3.1. Data

We evaluate our proposed methods on an in-house English video
dataset. The dataset is sampled from public social media videos and
de-identified before transcription. These videos contain a diverse
range of acoustic conditions, speakers, accents and topics. The test
set contains two types of videos, clean and noisy. Train, validation
and test data sizes are given in Table 1.

Table 1. Train, validation and test data duration in hours.
Language Train Valid Test

clean noisy
English 2K 5.2 5.1 10.2

Enhancement models are trained with a separate set of 1K hour
clean audios, which are obtained also from the in-house English video
dataset. Training utterances are generated using SNRs uniformly
sampled from [-5 dB, 5 dB]. Enhancement models are evaluated at
SNRs of -5 dB, 0 dB and 5 dB using 1000 utterances not used during
training.

For generating noisy mixtures, we use non-speech classes from
AudioSet [28]. For training RNN-T with additive noise based data
augmentation, noises are randomly added to utterances with a prob-
ability of 0.5 at SNRs uniformly sampled from [0 dB, 25 dB]. For
training RNN-T with enhancement based data augmentation, a given
batch is randomly processed using DCRN with a probability of 0.5.

3.2. Experimental Settings

All speech utterances are resampled to 16 kHz and normalized to
the range [−1, 1]. DCRN uses STFT with a frame size of 32 ms and
frame shift of 10 ms. ASR features are extracted using 80 dimensional
log Mel-filterbanks with a frame size of 16 ms and a frame shift of 10
ms. An utterance level mean and variance normalization is applied to
Log-Mel features.

We apply the additional frequency and time masking as in
SpecAugment [29]. RNN-T output labels consist of a blank label and
255 word pieces generated by the unigram language model algorithm
from SentencePiece toolkit [30].

All the models are trained using Adam optimizer [31] using a tri-
stage learning rate schedule proposed in [29]. We use first 2 epochs
for warm up and then divide remaining epochs in 3 equal parts. First
part is trained with constant learning rate and the last 2 parts are
trained using decaying learning rate, where minimum learning rate is
4e-6 and peak learning rate is 4e-4. Training in the third step of Fig.
4 uses a constant learning rate of 4e-6.

RNN-T model used BLSTM encoder layers of 800 hidden units,
and a 2-layer LSTM decoder of 160 hidden units. Linear layers
after encoder and decoder in the joint network use 1024 hidden
units. Output after the first and second BLSTM layer in encoder
are subsampled by a factor of two along the time dimension. The
selection module uses two BLSTM layers of state size 128 and linear
layers at input and output. p(t, f) is computed using Sigmoidal
nonlinearity at output.

3.3. Evaluation Metrics

We compare enhancement models in terms of short-time objective
intelligibility (STOI) [32] and scale-invariant signal-to-noise ratio



Table 2. STOI and SI-SNR comparisons between DCRN and BLSTM.
STOI (%) SI-SNR

test SNR -5 dB 0 dB 5 dB -5 dB 0 dB 5 dB
original + noise 57.3 68.6 78.9 -5.0 0.0 5.0

BLSTM 75.1 82.6 87.4 6.6 9.8 12.1
DCRN 76.9 84.3 88.7 6.5 9.1 10.6

Table 3. WER and WERR comparisons between different data
augmentation techniques on top of baseline. SE denotes speech
enhancement and LKL denotes training with KL divergence loss.

Clean Noisy Average
Baseline RNN-T 14.8 19.4 WERR

+ noise 14.1 18.6 4.4%
+ noise + LKL(s1, s2) 13.8 18.3 6.2%

+ SE 14.3 18.9 3.0%
+ SE + LKL(s1, s3) 13.9 18.4 5.6%

+ noise + SE 13.7 18.0 7.3%
+ noise + SE + LKL(s(1,2), s(3,4)) 13.0 17.4 11.2%

(SI-SNR) [33].
We evaluate ASR models in terms of word error rate (WER).

In each comparison, we first compute the relative WER reduction
(WERR) on clean/noisy as a percentage, and then take the unweighted
average of two percentages, which we refer to as an average WERR.

3.4. Results and Comparisons

First, we compare DCRN with a BLSTM model which is shown in
[24] to improve cross-corpus generalization [34] . As in Table 2,
DCRN is consistently better than BLSTM in terms of STOI for all
SNR conditions, while BLSTM is better in terms of SI-SNR. In this
work, we proceed with DCRN for ASR experiments.

Next, ASR results with data augmentation are shown in Table
3, where LKL(s(1,2), s(3,4)) denotes training uniformly using either
LKL(s1, s3) or LKL(s2, s4). We observe that using additive noise
as data augmentation can obtain better WER on both test sets with an
average WERR of 4.4%. Next, training with an additional KL loss as
in Eq. 16 improves it to 6.2%.

Using speech enhancement as data augmentation obtains an av-
erage WERR of 3.0%, and adding KL loss achieves 5.6%. Finally,
using both noise and speech enhancement based data augmentation
along with LKL(s(1,2), s(3,4)) obtains the best WERR 11.2%. We
also experimented with KL loss between all possible pairs, but the
results were similar.

Next, we evaluate the ASR performance using DCRN as a pre-
processing frontend. Results are given in Table 4 along with the
respective total model parameters . First, we observe that training
RNN-T from scratch on enhanced utterances degrades the perfor-
mance. However, when we initialize RNN-T training with a model
learned on original utterances (Step 2 in Fig. 4), we observe consistent
improvements. The average WERR in this case is 3.9%. Additionally,
when we fine tune DCRN with RNN-T using a small learning rate of
4e-6 (Step 3 in Fig. 4), average WERR improves to 8.0%. Further,
adding selection module slightly improves performance on clean test
set and provides an average WERR of 8.3%. Since RNN-T with
DCRN has more parameters than the vanilla RNN-T baseline, we
build a larger RNN-T model by increasing encoder layers from 5 to
6, which has the total parameters comparable to DCRN + RNN-T.
RNN-T large obtains 4.4% WERR. Also, the number of parameters
in selection module is negligible compared to RNN-T + DCRN, so

Table 4. WER comparisons between different training schemes.
Model ids, such as a) and b) in the first column are used in the second
column to denote the initialization model. DCRN fixed denotes non-
trainable DCRN.

# params. Clean Noisy Average
(a) RNN-T 90 M 14.8 19.4 WERR

RNN-T + DCRN fixed

103 M

15.0 19.9 -2.0%
(b) (a) + DCRN fixed 14.1 18.8 3.9%
(c) (b) + fine tunning 13.5 18.0 8.0%

(c) + selection 13.4 18.0 8.3%
RNN-T large 105 M 14.1 18.6 4.4%

Table 5. WER results in combining data augmentation and prepro-
cessing.

Clean Noisy Average
Baseline RNN-T 14.8 19.4 WERR

(a) + noise + SE + LKL(s(1,2), s(3,4)) 13.0 17.4 11.2%
(b) (a) + DCRN 12.7 17.2 12.8%
(c) (b) + selection 12.7 17.2 12.8%
(d) (a) + DCRN + LKL(s3, s4) 12.6 17.2 13.1%
(e) (a) + DCRN + selection + LKL(s3, s4) 12.6 17.1 13.4%

we have reported the same number of parameters in these two cases.
Finally, we combine data augmentation and preprocessing tech-

niques by initializing the RNN-T training with a model trained using
data augmentation (last row in Table 3). We follow step 2 and step 3
of the three-step training scheme in this case, where the initialization
model in step 2 is obtained from training with data augmentation.
The results are given in Table 5. An average WERR of 12.8% is
observed in this case. Also, we can exploit KL loss in this case by
using LKL(s3, s4). Note that we can not use other types of pairs for
KL loss because in this case RNN-T requires training on enhanced
utterances. We obtain best WERR of 13.4% by combining data aug-
mentation with preprocessing, which includes selection module and
uses LKL(s3, s4) during training step 2 and step 3.

4. CONCLUSIONS

In this work, we have explored a complex spectral mapping based
speech enhancement system to improve ASR performance. Our key
finding is that using additive noise and speech enhancement as data
augmentation - paired with a proposed KL divergence criterion be-
tween the ASR outputs of original and enhanced utterances - obtains
significant performance improvements. Further, we have found that
using a stepwise training of speech enhancement and ASR system can
also improve WER substantially. Also, we have observed additional
improvements by combining both speech enhancement based data
augmentation and preprocessing techniques.
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