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Abstract—This paper proposes a new learning mechanism for
a fully convolutional neural network (CNN) to address speech en-
hancement in the time domain. The CNN takes as input the time
frames of noisy utterance and outputs the time frames of the en-
hanced utterance. At the training time, we add an extra operation
that converts the time domain to the frequency domain. This con-
version corresponds to simple matrix multiplication, and is hence
differentiable implying that a frequency domain loss can be used
for training in the time domain. We use mean absolute error loss be-
tween the enhanced short-time Fourier transform (STFT) magni-
tude and the clean STFT magnitude to train the CNN. This way, the
model can exploit the domain knowledge of converting a signal to
the frequency domain for analysis. Moreover, this approach avoids
the well-known invalid STFT problem since the proposed CNN op-
erates in the time domain. Experimental results demonstrate that
the proposed method substantially outperforms the other methods
of speech enhancement. The proposed method is easy to implement
and applicable to related speech processing tasks that require time-
frequency masking or spectral mapping.

Index Terms—Speech enhancement, fully convolutional neural
network, time domain enhancement, deep learning, mean absolute
error.

I. INTRODUCTION

S PEECH enhancement is the task of removing or attenuat-
ing additive noise from a speech signal, and it is generally

concerned with improving the intelligibility and quality of de-
graded speech. Speech enhancement is employed as a prepro-
cessor in many applications such as robust automatic speech
recognition, teleconferencing and hearing aids design. The pur-
pose of monaural (single-channel) speech enhancement is to
provide a versatile and cost-efficient approach to the problem
that utilizes recordings from only a single microphone. Single-
channel speech enhancement is considered a very challenging
problem especially at low signal-to-noise ratios (SNRs). This
study focuses on single-channel speech enhancement in the time
domain.
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Traditional monaural speech enhancement approaches in-
clude statistical enhancement methods [1] and computational
auditory scene analysis [2]. In the last few years, supervised
methods for speech enhancement using deep neural networks
(DNNs) have become the mainstream [3]. Among the most
popular deep learning methods are denoising autoencoders [4],
feedforward neural networks [5], [6], and CNNs [7]–[9].

Most frequently employed methods for supervised speech en-
hancement use T-F masking or spectral mapping [3]. Both of
these approaches reconstruct the speech signal in the time do-
main from the frequency domain using the phase of the noisy
signal. It means that the learning machine learns a mapping
in the frequency domain but the task of going from the fre-
quency domain to the time domain is not subject to the learning
process. Integrating the domain knowledge of going from the
frequency domain to the time domain, or the other way around,
could be helpful for the core task of speech enhancement. A
similar approach of incorporating such domain knowledge in-
side the network is found to be useful in [10], which employs a
time-domain loss for T-F masking. Recently in [11], the authors
integrate a fixed number of steps of the iterative Multiple In-
put Spectrogram Inversion (MISI) algorithm [12] inside DNN,
which is found to be helpful for the speaker separation task.

We design a fully convolutional neural network that takes as
input the noisy speech signal in the time domain and outputs the
enhanced speech signal in the time domain. One way to train this
network is to minimize the mean squared error (MSE) or the
MAE loss between the clean speech signal and the enhanced
speech signal [8], [9]. However, our experiments show that,
using a time domain loss, some of the phonetic information in the
estimated speech is distorted probably because the underlying
phones are difficult to distinguish from the background noise.
Also, using a loss function in the time domain does not produce
a good speech quality. So, we believe that it is important to use
a frequency domain loss, which can discriminate speech sounds
from nonspeech noises and produce speech with high quality.

Motivated by the above considerations, we propose to add an
extra operation in the model at the training time that converts
the estimated speech signal in the time domain to the frequency
domain. The conversion from the time domain to the frequency
domain is differentiable, so a loss in the frequency domain can
be used to train a network in the time domain. We propose to
use the MAE loss between the clean STFT magnitude and the
estimated STFT magnitude.

The two approaches proposed in [10], [11] employ a DNN in
the frequency domain and use a loss function in the time domain
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to train the DNN. However, these methods use the noisy phase to
reconstruct a time domain signal, and may suffer from the well-
known invalid STFT problem [13]. In our approach, a model is
employed in the time domain and trained using a loss function
in the frequency domain, so the generated signal is always a
valid signal and we do not need to use the phase of the noisy
signal. The neural network learns a phase structure itself in the
process of optimizing the proposed loss. We show in Section VI
that the learned phase is better than the noisy phase.

Other researchers have explored speech enhancement in the
time domain using deep learning. In [9], authors explore CNNs
for speech enhancement and claim that fully connected layers
inside a DNN are not suitable for the time domain enhancement
and instead propose to use a fully-convolutional neural network.
Similar to our work, a time domain network has been proposed
using a loss based on a short-term objective intelligibility metric
[14]. In [8], authors propose a generative adversarial network
[15] for speech enhancement in which the generator is an au-
toencoder based fully-convolutional network that is trained with
the help of a discriminator. Recently, the Bayesian wavenet [16]
has been explored for speech enhancement followed by [17],
which makes the wavenet [18] faster and uses a discriminative
approach rather than a generative approach. Very recently, a
fully convolutional network is proposed for speaker separation
in the time domain [19] and it is trained using a loss based on
scale-invariant signal-to-noise ratio (SI-SNR).

The work presented in this paper is an extension of our
preliminary work in [20]. Here, we present more extensive
experiments, provide a justification for the observed behav-
ior, and evaluate the proposed model in a speaker- and noise-
independent way. The rest of the paper is organized as follows.
In the next Section, we describe the method to compute a fre-
quency domain loss for a CNN in the time domain. Section III
explains the details about the model architecture. In Section IV,
we briefly describe the invalid STFT problem. Experiments and
comparisons are described in Sections V and VI. Section VII
concludes the paper.

II. FREQUENCY DOMAIN LOSS FUNCTION

Given a real-valued vector xt of size N in the time domain,
we can convert it to the frequency domain by multiplying it with
a complex-valued discrete Fourier transform (DFT) matrix D
using the following equation

xf = Dxt (1)

where xf is the DFT of xt and D is of size N × N . Since xt

is real-valued, the relation in (1) can be rewritten as

xf = (Dr + iDi)xt = Drxt + iDixt (2)

where Dr and Di are real-valued matrices formed by taking
the element-wise real and imaginary part of D and i denotes the
imaginary unit. This relation can be separated into two Equations
involving only real-valued vectors as given in the following

Equation.

xfr
= Drxt

xfi
= Dixt (3)

Here, xfr
and xfi

are real-valued vectors formed by taking
element-wise real and imaginary part of xf . A frequency do-
main loss can thus be defined using xfr

and xfi
. One such

loss defined as the average of the MSE losses on the real and
imaginary part of xf is:

L(x̂f ,xf ) =
1
N

N∑

n=1

((x̂fr
(n) − xfr

(n))2

+ (x̂fi
(n) − xfi

(n))2) (4)

where x̂f is an estimate of xf . x(n) denotes the nth component
of x. It should be noted that this loss function has both magnitude
and phase because it uses the real as well as the imaginary part.
However, we find that using both the magnitude and the phase
does not give as good performance as using only the magnitude.
So, we use the following loss function defined using only the
magnitudes.

L(x̂f ,xf ) =
1
N

N∑

n=1

|(|x̂fr
(n)| + |x̂fi

(n)|)

− (|xfr
(n)| + |xfi

(n)|)| (5)

This loss can also be described as the MAE loss between the
estimated STFT magnitude and the clean STFT magnitude when
the magnitude of a complex number is defined using the L1
norm. We also compare the proposed loss function with an L2
loss defined as:

L(x̂f ,xf ) =
1
N

N∑

n=1

|
√

x̂fr
(n)2 + x̂fi

(n)2 + α

−
√

xfr
(n)2 + xfi

(n)2 + α| (6)

Here, α is a small positive constant added to stabilize the train-
ing. Our use of the MAE loss is partly motivated by a recent
observation that the MAE loss works better in terms of objective
quality scores when a spectral mapping based DNN is trained
[21]. In the present study we have confirmed that the MAE loss
performs better than the MSE loss for objective intelligibility
and quality.

Fig. 1 shows a schematic diagram for computing a frequency
domain loss from enhanced time domain frames. The proposed
model operates on the frame size of 2048 samples, meaning that
it takes as input a frame of duration 128 ms with the sampling
frequency of 16 kHz, and outputs a frame of the same length. All
the enhanced frames of an utterance at the network output are
combined using the overlap-and-add (OLA) method to obtain
the enhanced utterance. A frame shift of 256 samples is used
for OLA. The enhanced utterance is then divided into frames of
size 512. The obtained frames are multiplied by the Hamming
window and then separately with two matrices Dr and Di ,
each of size 512 × 512 as defined in Equation (2). The matrix
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Fig. 1. Block diagram showing the steps involved in computing a frequency
domain loss from the time domain frames at the output of network. L denotes
the number of frames of size 2048, and N the length of the enhanced utterance
obtained after overlap-and-add. M is the number of frames of size 512. Dr and
Di represent the real and the imaginary part of the DFT matrix, respectively.

multiplication gives the real and imaginary part of the STFT.
Next, the real and imaginary part of the STFT are combined
to get the STFT magnitude. The computed STFT magnitude is
compared with the clean STFT magnitude to obtain a frequency
domain loss.

III. MODEL ARCHITECTURE

We use a fully convolutional neural network that is comprised
of a series of convolutional and deconvolutional layers. We first
describe the convolution and deconvolution operation and then
the proposed model.

A. Convolution

Formally, a 1-D discrete convolution operator ∗, which con-
volves signal f with kernel k of size 2m + 1 and with stride r,
is defined as

(f ∗ k)(p) =
∑

s+t=(r×p)

f(s)k(t) (7)

where p, s ∈ Z and t ∈ [−m,m] ∩ Z. Here, Z denotes the set of
integers. A strided convolution used in this work is a convolution
meant to reduce the size at the output by sliding the kernel over
the input signal with a step greater than one. For example, given
an input of length 2N , a kernel of size 2m + 1 and zero padding
of size m on both sides of the input, a convolution with stride 2
will produce an output of size N . Hence the input of size 2N is
effectively downsampled to an output of size N .

B. Deconvolution

A deconvolution layer [22], also known as transposed convo-
lution, is a convolution meant to increase the size at the output.
For a deconvolution with stride length r, r − 1 zeroes are first
inserted between the consecutive samples of the input signal.
Then it is zero padded on both sides with an appropriate amount
so that the convolution with a kernel of size k and stride 1 pro-
duces the output of desired size. For example, given an input
of length N , kernel of size (2m + 1), and stride of 2, first, one
zero will be inserted between the consecutive samples of the

Fig. 2. A schematic diagram illustrating the architecture of the proposed
model. The numbers represent the output dimension after each layer where M
× N denotes a signal with dimension M and number of channels equal to N .
Note that the number of channels in the decoder is double of that in the encoder
because of the concatenation of the incoming connection from the symmetric
layer of the encoder. Arrows denote skip connections.

input, giving a signal of length 2N − 1. Then the signal will be
zero-padded on left and right by m and m + 1 respectively to
get the signal of length 2N + 2m. After this, a convolution with
a filter of size 2m + 1 will produce an output of size 2N . Hence
the input of size N is effectively upsampled to an output of
size 2N .

C. Proposed Model

We use an autoencoder based fully convolutional neural net-
work with skip connections first proposed for time domain
speech enhancement in [8], which was adopted from U-Net
[23]. The schematic diagram of the proposed model is shown
in Fig. 2, which illustrates the processing of one frame. The
first layer of the encoder is a convolutional layer that increases
the number of channels from 1 to 64. Each of the next eight
layers successively reduces the dimension of the input signal to
half using convolutions with a stride of 2, while either doubling
or maintaining the number of channels. The final output of the
encoder is of size 8 with 256 channels. The decoder mirrors the
encoder, consisting of a series of eight deconvolutional layers
[22] with a stride of 2 that double the dimension of its input mak-
ing the number of channels the same as in the corresponding
symmetric layer of the encoder. The output of each layer in the
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decoder is concatenated with the output from the corresponding
symmetric layer of the encoder along the channel axis.

The skip connections are included because a signal can not
be well reconstructed from the final output of the encoder as it
has a much reduced dimension compared to the input and is a
bottleneck. Furthermore, the skip connections help to provide
gradients to the layers close to the input layer and avoid the
vanishing gradient problem [24]. The final output layer is a sim-
ple convolutional layer which reduces the number of channels
from 64 to 1. Each layer in the network uses the activation of
parametric ReLU non-linearity [25] except for the output layer
which uses the Tanh. A dropout [26] rate of 0.2 is applied at
every 3 layers. To summarize, the dimensionality of the outputs
from the successive layers in the proposed network is 2048 × 1
(input), 2048 × 64, 1024 × 64, 512 × 64, 256 × 128, 128 ×
128, 64 × 128, 32 × 256, 16 × 256, 8 × 256, 16 × 512, 32 ×
512, 64 × 256, 128 × 256, 256 × 256, 512 × 128, 1024 × 128,
2048 × 128, 2048 × 1 (output).

For the speaker- and noise-independent model trained on the
WSJ0 SI-84 dataset [27] (see Section V-A), we use a deeper
network that takes as input a frame of size 16384 samples. The
model mentioned above gives good performance for this task
but is not able to improve the state-of-the-art performance. For
the enhancement task on this dataset, the importance of future
and past context was first established in [28]. We also observe
a considerable performance improvement when the context is
increased by increasing the frame size. The dimensionality of
the successive layers in the network used for this task is 16384
× 1 (input), 16384 × 32, 8192 × 32, 4096 × 32, 2048 × 64,
1024 × 64, 512 × 64, 256 × 128, 128 × 128, 64 × 128, 32 ×
256, 16 × 256, 8 × 256, 16 × 512, 32 × 512, 64 × 256, 128 ×
256, 256 × 256, 512 × 128, 1024 × 128, 2048 × 128, 4096 ×
64, 8192 × 64, 16384 × 64 (output).

IV. INVALID SHORT-TIME FOURIER TRANSFORM

The STFT of a signal is obtained by taking the DFT of over-
lapped frames of a signal. The overlap between consecutive
frames causes the adjacent frames to have common samples
at the boundary of frames. This correlation between adjacent
frames appears in the frequency domain as well and results in a
certain relationship between the STFT magnitude and the STFT
phase. This relationship needs to be maintained to reconstruct
the original signal in the time domain. In [13], the authors show
that not all 2-dimensional complex-valued signals correspond to
a valid STFT. A 2-dimensional complex-valued signal, X(m, k)
is a valid STFT if and only if the following holds.

STFT(ISTFT(X(m, k))) = X(m, k) (8)

Here, ISTFT denotes inverse STFT, m frame number, and k is
frequency index. An STFT obtained by taking the STFT of a
real signal in the time domain is always a valid STFT. It means
that given a real signal x(t) in the time domain, the following
relations will always hold.

ISTFT(STFT(x(t))) = x(t)

STFT(ISTFT(STFT(x(t)))) = STFT(x(t)) (9)

The problem arises when the STFT magnitude of a given real
or the STFT phase of the signal are altered separately. In such
a case, the required relationship between the STFT magnitude
and STFT phase is not guaranteed, and Equation (6) may not
hold. In the frequency domain speech enhancement, popular ap-
proaches are T-F masking and spectral mapping. Both of these
methods require using the STFT phase of the noisy speech with
enhanced STFT magnitude to reconstruct a time domain signal.
The combination of the noisy phase with the enhanced magni-
tude of STFT is unlikely a valid STFT, as recently demonstrated
in [29]. Invalid STFT causes unpleasant signal distortions. To
deal with this problem, an iterative method has been proposed to
get a signal in the time domain which produces the STFT magni-
tude close to the enhanced STFT magnitude while maintaining
the valid STFT [13].

The proposed framework can be thought of as a supervised
way of resolving the invalid STFT problem by a CNN, which
produces a speech signal in the time domain but is trained with
a loss function which minimizes the distance measured in terms
of the STFT magnitudes.

The proposed model generates consecutive frames one by
one and combines them using the OLA method as we find that
OLA is better than a simple concatenation. Even though we use
a loss function based on the magnitude of a valid STFT at the
training time, this does not guarantee that generated consecu-
tive frames will have matching samples at the boundary. But we
use a frame size of 128 ms so that, even though the analysis
window size is 32 ms, the validity of signal is guaranteed over
the duration of 128 ms. The proposed model does not guarantee
the whole utterance to be a valid signal. The simple concate-
nation of consecutive frames would give a valid signal, but it
exhibits boundary discontinuity, giving worse objective scores
than OLA. A different approach to generate a valid signal at the
utterance level is to design a model that produces one sample
at a time. But, such models based on deep learning are very
slow and have not been established for speech enhancement.
One such example is wavenet [18], which has been explored for
denoising in [16] and [17]. The proposed model in [16] is very
slow, and in [17], it operates at the frame level for efficiency and
hence suffers from the same problem.

V. EXPERIMENTAL SETTINGS

A. Datasets

In our first set of experiments, we evaluate and analyze the
proposed framework on the TIMIT dataset [30] which con-
sists of utterances from many male and female speakers. We
use 2000 randomly chosen utterances from the TIMIT training
set as the training utterances. The TIMIT core test set con-
sisting of 192 utterances is used as the test set. We evaluate
models for the noise-dependent and noise-independent case.
Five noise-dependent models are trained on the following five
noises: babble, factory1, oproom, engine, and speech-shaped
noise (SSN). A single noise-independent model is trained using
the five noises mentioned above and evaluated on two untrained
noises: factory2 and tank. All the noises except SSN are from
the NOISEX [31] dataset. All noises are around 4 minutes long.
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The training set is created by mixing random cuts from the first
half of noises at the SNRs of −5 dB and 0 dB. The test set is cre-
ated by adding random cuts from the second half of the noises at
the SNRs of −5 dB, 0 dB, and 5 dB. Here, 5 dB is an untrained
SNR condition that is used to asses SNR generalization of the
trained models. The datasets are similar to the ones used in
[21], [32].

Further, we evaluate the proposed framework in a speaker-
dependent way on the IEEE database[33]. This experiment is
performed to evaluate if the proposed framework scales well for
untrained noises after training using a large number of noises.
The IEEE database consists of 720 utterances of a single male
speaker. We create a large training set by mixing randomly se-
lected 560 IEEE sentences with 10000 non-speech sounds from
a sound-effect library (available at www.sound-ideas.com). The
remaining 160 utterances are used as test utterances. The train-
ing set consists of 640000 noisy utterances. To create a training
utterance an IEEE sentence is first randomly selected from the
560 training utterances. The selected utterance is then mixed at
a fixed SNR of −2 dB with a random segment of a randomly
selected noise. The total duration of the training noises is around
125 hours, and that of the training mixtures is around 380 hours.
The test set is created by mixing the selected 160 test sentences
with babble and cafeteria noise from the Auditec CD (available
at http://www.auditec.com) at the SNRs of −5 dB, −2 dB, 0 dB
and 5 dB. Here, −5 dB, 0 dB and 5 dB are untrained SNRs. The
training and test set used in this experiment are similar to the
ones used in [34], hence facilitating a direct comparison.

We also evaluate the proposed framework on the WSJ0 SI-84
dataset [27] that consists of 7138 utterances from 83 speakers.
A speaker- and noise-independent model is trained using a large
training set. Seventy-seven speakers are selected to produce
training utterances. The test set is created from the utterances of
6 speakers that are not included in the training set. The training
and test mixtures are generated in the same manner as described
in the previous paragraph. The only difference is that, in this
experiment, 320000 utterances are generated at five SNRs of
−5 dB, −4 dB, −3 dB, −2 dB, −1 dB. An utterance, a noise,
and an SNR value are randomly selected first. Then the selected
utterance is mixed with a random cut from the selected noise at
the selected SNR. The SNRs used for evaluation are−5 dB, 0 dB
and 5 dB. The training and the test set for this experiment are
the same as in [35], again facilitating quantitative comparisons.

B. System Setup

As described in the last subsection, we perform training on
three datasets: TIMIT, IEEE, and WSJ0 SI-84. All the utterances
are resampled to 16 kHz. The noisy and the clean utterances are
normalized to the value range [−1, 1], and frames are extracted
from the normalized utterances. A frame size of 2048 samples
(128 ms) is used for the experiments on the TMIT and IEEE
databases. A frame size of 16384 samples is used, as mentioned
in Section III, for the experiments on WSJ0 SI-84. The frame
shift to generate training frames is half of the frame size for IEEE
and WSJ0 and 256 samples for the experiments on TIMIT.

A filter size of 11 is used. All the weights in CNNs are
initialized using the Xavier initializer with normally distributed
random initialization [36]. The Adam optimizer [37] is used
for SGD (stochastic gradient descent) based optimization with
a batch size of 4 utterances. The shorter utterances in a batch
are zero padded to match the size of the longest utterance. The
loss value computed over the zero padded region is ignored for
gradient computation. The learning rate is set to 0.0002.

The major difference between the architecture of the genera-
tor in SEGAN [8] and the architecture of our model is that the
input frame size to SEGAN is equal to 16384 samples whereas
our input frame size is 2048 samples. The filter size in SEGAN
is 31 as compared to 11 in our model. The total number of pa-
rameters in the SEGAN model is around 58 million whereas our
model has around 6.4 million parameters.

C. Baseline Models

To compare the noise-dependent and noise-independent mod-
els trained on the TIMIT dataset, we use three baseline models.
First, we train a DNN model using the MAE loss to estimate
the ideal ratio mask (IRM) [32]. This model is a 3-layered fully
connected DNN that takes as input the noisy STFT magnitudes
of five consecutive frames (centered at the current frame) con-
catenated together and outputs the IRM of the corresponding
five frames together. Multiple predictions of the IRM are av-
eraged. The second baseline is the SEGAN model [8]. In the
method in [8], the generator of the generative adversarial net-
work (GAN) [15] is trained using two loss functions; adversarial
loss and MAE loss in the time domain. We train two versions
of this model. The first is trained using both the loss functions,
adversarial loss and the MAE loss as in the original paper. We
call this model SEGAN. The second is trained using only the
loss on time domain samples. We call this model SEGAN-T in
our experiments.

The model trained on the IEEE dataset is compared with
a five-layered DNN model proposed in [34] which uses the
same dataset as in our work, and generates the training and test
mixtures in the same manner. The input to their DNN is the
concatenation of the power ( 1

15 ) compressed cochleagram of
23 consecutive frames (centered at the current frame) of noisy
speech. The output of the DNN is the IRM of 5 consecutive
frames. Multiple predictions of the IRM are also averaged. Each
hidden layer has 2048 units.

Our speaker- and noise-independent model trained on WSJ0
SI-84 dataset is compared with a recently proposed model [35].
This gated residual network (GRN) model is a 62-layer deep
fully convolutional network with residual connections. It takes
as input the spectrogram of the whole utterance at once and out-
puts the phase-sensitive mask (PSM) [38] of the whole utterance.
The layers in this model are comprised of dilated convolutional
layers having gated linear units with an exponentially increasing
rate of dilation. This model has the state-of-the-art performance
for this speaker- and noise-independent enhancement task.

D. Evaluation Metrics and Comparisons

In our experiments, models are compared using short-term
objective intelligibility (STOI) [39], perceptual evaluation of
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TABLE I
PERFORMANCE COMPARISON BETWEEN VARIOUS LOSS FUNCTIONS AND NETWORK MODELS FOR NOISE-DEPENDENT MODELS TRAINED ON THE TIMIT DATASET

speech quality (PESQ) [40], and scale-invariant signal-to-
distortion ratio (SI-SDR) [41] scores, all of which represent
the standard metrics for speech enhancement. STOI has a typ-
ical value range from 0 to 1, which can be roughly interpreted
as percent correct. PESQ values range from −0.5 to 4.5.

All the time domain models are compared for both the MAE
loss and the MSE loss training. For the experiments on the
TIMIT dataset, the first comparison is done between the base-
line models and the proposed model trained using different loss
functions. The proposed model can be trained using a loss in the
time domain or different types of loss in the frequency domain.
For a frequency domain loss, two possible loss functions are
a loss on both the real and the imaginary part of STFT and a
loss on the STFT magnitude. We call our model autoencoder
convolutional neural network (AECNN). The corresponding ab-
breviated names for our models trained using different loss func-
tions are AECNN-T for using a loss on time domain samples,
AECNN-RI for using a loss on both the real and the imaginary
part of the STFT, and AECNN-SM for using a loss on STFT
magnitudes. AECNN-SM1 denotes the loss defined on L1 norm
and AECNN-SM2 denotes the loss defined on L2 norm of STFT
coefficients.

Note that a model trained using a loss in the time domain
or a loss on both the real and the imaginary part of the STFT
utilizes phase information during training and hence training is
supposed to learn both the magnitude and the phase. The model
proposed in [42] also uses a loss on the real and imaginary part
of the STFT but it operates in the frequency domain and thus is
fundamentally different from our approach.

AECNN-SM trains a given model using a loss on STFT mag-
nitudes, with no phase used at the training time. With the pro-
posed time-domain enhancement, however, AECNN learns a
phase structure itself. It is interesting to explore whether the
learned phase is better than the mixture phase. We compare
the learned phase with the mixture phase and the clean phase.
First, we combine the STFT magnitude of the noisy utterance
with two different kinds of phase: the learned phase and the
clean phase. These are named MIX-SM and MIX-CLN respec-
tively. Second, we combine the STFT magnitude predicted by
the baseline IRM estimator with three kinds of phase: the noisy
phase, the learned phase, and the clean phase. They are named

IRM-MIX, IRM-SM, and IRM-CLN respectively. The STOI,
PESQ and SI-SDR scores are compared at the SNRs of −5, 0,
and 5 dB.

VI. RESULTS AND DISCUSSIONS

First, we present the results of noise-dependent models
trained on the TIMIT dataset. Table I lists the average results
over all the five noises at −5 dB, 0 dB, and 5 dB SNR. We di-
vide our loss functions into two categories, those with phase, i.e.,
AECNN-T, SEGAN-T or AECNN-RI, and those without phase,
i.e., AECNN-SM1 and AECNN-SM2. We observe that the mod-
els trained with a loss with phase perform better using MSE
whereas the models trained with a loss without phase perform
better using MAE. The SEGAN-T, AECNN-T, and AECNN-RI,
have better STOI and SI-SDR scores with MAE but significantly
worse PESQ. AECNN-SM1 and AECNN-SM2 produce better
scores with the MAE loss. AECNN-SM1 and AECNN-SM2
have similar STOI and PESQ scores but AECNN-SM1 is con-
sistently better in terms of SI-SDR.

Next, we observe that AECNN-T is significantly better than
SEGAN-T and SEGAN, suggesting that the AECNN archi-
tecture is better than SEGAN for speech enhancement in the
time domain. Additionally, the time domain models are much
better than the baseline IRM based DNN model. The pro-
posed AECNN-SM1 is significantly better in terms of STOI
and PESQ compared to the AECNN-RI with MSE. AECNN-RI
is marginally better in terms of SI-SDR. Note that the SI-SDR
of AECNN-RI with MAE is better than AECNN-SM1, but its
PESQ score is very low, implying that the AECNN-SM1 is
better as it substantially improves PESQ while maintaining SI-
SDR. In summary, the proposed AECNN-SM1 is the best in
terms of STOI and PESQ, whereas AECNN-RI is the best for
SI-SDR.

A similar performance profile is observed for the noise-
independent models at the three SNRs as given in Table II.
AECNN-SM1 and AECNN-SM2 are the best in terms of STOI
and PESQ. AECNN-RI is the best for SI-SDR at 5 dB but
AECNN-SM1 is better at 0 dB and −5 dB. Note that we com-
pare AECNN-SM1-MAE with AECNN-RI-MSE. AECNN-
SM1 and AECNN-SM2 have similar STOI and PESQ scores but
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TABLE II
PERFORMANCE COMPARISON BETWEEN VARIOUS LOSS FUNCTIONS AND NETWORK MODELS NOISE-INDEPENDENT MODELS TRAINED ON THE TIMIT DATASET

Fig. 3. Spectrogram of a sample utterance mixed with babble noise at −5 dB SNR, and its enhanced spectrograms using different models. (a) Noisy spectrogram.
(b) Spectrogram enhanced using a DNN based IRM estimator. (c) Spectrogram enhanced using AECNN trained with a time domain loss. (d) Spectrogram enhanced
using AECNN trained with an STFT magnitude loss. (e) Clean spectrogram.

AECNN-SM1 is consitently better in terms of SI-SDR, making
it the better enhancement approach.

For illustration, we plot spectrograms of a sample utterance
in Fig. 3. We can observe that the DNN based IRM estimator
does not appear to distort the speech signal by much but is
not able to remove some of the noise as can be seen for low-
frequency regions around 1.25s. AECNN-T reduces the noise
more but still retains some noise as can be observed in the low-
frequency region around 2.5s. The enhanced spectrogram using
the STFT magnitude loss looks closest to the clean spectrogram,
and is better not only for noise reduction but also seems to
introduce relatively negligible distortions compared to the clean
spectrogram.

The frequency domain loss functions using the real and imag-
inary part of the STFT do not perform as well as a loss based
on the STFT magnitude. One explanation for this observation
is that the STFT magnitude exhibits clearer temporal structure
than the real part or imaginary part. Also, it is non-negative, and
likely easier to learn. As analyzed in [43], structure exists in
the absolute of the real and the imaginary part of the STFT of

Fig. 4. STFT structure. Plots of the sign of real and imaginary part of
STFT of a sample utterance are shown in (a) and (b). In these plots, black
and white dots denote −1 and 1 respectively. The signs of the real and
imaginary parts of STFT are very noisy. Plots (c) and (d) show the struc-
ture of the absolute of the real and imaginary part of STFT of the same
utterance.
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Fig. 5. PESQ comparisons of real-valued and absolute-valued loss functions. (a) PESQ scores of the models trained on the real part and the absolute of the real
part of STFT. (b) PESQ scores of the models trained on the imaginary part and the absolute of the imaginary part of STFT.

Fig. 6. STOI, PESQ, and SI-SDR comparisons between learned phase, noisy phase, and clean phase.

a speech signal. Fig. 4 shows the signs and the absolute values
of the real and imaginary parts of STFT for a sample utterance.
To plot the absolute values, we first normalize the relevant data
to the value range [10−8 , 1] and then take their logarithm. We
observe that the signs of real and imaginary parts are very noisy
whereas there is a clear structure in their absolute values. This
suggests that the real and the imaginary parts that are obtained
by multiplying the signs and the absolute values would be un-
structured. It further suggests that a model trained using a loss
on the absolute values of the real or the imaginary part of STFT
should perform better than a loss defined directly on the real
and imaginary parts. To verify, we have trained models using a
loss on the absolute value of the real and the imaginary part of
the STFT. The PESQ scores for noise-dependent models trained
on babble noise are plotted in Fig. 5. We can see that using the

absolute values improves the PESQ score and makes the per-
formance comparable to the AECNN-SM1 model. We obtain
similar results for the other four noises and noise-independent
models.

Next, we compare learned phase with noisy phase and clean
phase. The noisy test utterances constructed from the TIMIT
corpus are used to obtain two STFT magnitudes: noisy STFT
magnitude and STFT magnitude enhanced by the baseline DNN
estimator. The two magnitudes are combined with three kinds
of phase: noisy phase, learned phase and clean phase, to recon-
struct a signal in the time domain. STOI, PESQ and SI-SDR
values are compared with their corresponding mixture values.
These scores at 3 SNR conditions are plotted in Fig. 6. Note that
the last column is for the factory2 noise which is enhanced us-
ing the noise-independent model. In all the plots, the three lower
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TABLE III
PERFORMANCE COMPARISON BETWEEN THE BASELINE DNN AND THE

PROPOSED FRAMEWORK FOR NOISE-INDEPENDENT MODELS TRAINED ON THE

IEEE DATASET. THE SCORES DENOTE THE PERCENT IMPROVEMENT IN STOI
OVER MIXTURE

TABLE IV
COMPARISON BETWEEN THE BASELINE GRN AND THE PROPOSED METHOD

FOR SPEAKER- AND NOISE-INDEPENDENT MODEL TRAINED ON THE WSJ0
S1-84 DATASET AND TESTED ON UNTRAINED SPEAKERS. THE SCORES DENOTE

THE IMPROVEMENT OVER MIXTURE

lines are for the speech reconstructed from the noisy STFT mag-
nitudes and upper three lines are for the speech reconstructed
using the enhanced STFT magnitude. We observe that the re-
sults with the learned phase are consistently better than those
with the mixture phase. This suggests that the learned phase is
better than the noisy phase for both the noise-dependent and
noise-independent models. Using the clean phase all the scores
are significantly better over the noisy phase. This performance
gap is partly filled by using the learned phase. On the other hand,
there is room for improvement if a neural network can learn to
estimate a phase closer to the clean phase.

The proposed method is further evaluated on the IEEE dataset
for speaker-dependent but noise-independent training on a large
number of noises. The performance and comparison with the
DNN baseline in STOI are given in Table III. The DNN model
improves the STOI score by 16.6% at the −5 dB SNR, which
is a difficult and untrained SNR condition. In this cndition the
proposed framework improves the STOI score by 23.3%, which
represents a substantial improvement. The STOI improvement
over the baseline is 5.5% at -2 dB, 4% at 0 dB and 1.6% at 5 dB.

The baseline DNN used here has 20.5 million parameters
whereas our model has only 6.4 million parameters. The DNN
takes the acoustic features of 23 consecutive frames and outputs
the IRM of 5 consecutive frames. It means that it uses informa-
tion from 240 ms of speech and outputs 60 ms of speech. Our
model operates on a speech of duration 128 ms and outputs a
speech of duration 128 ms.

Finally, we evaluate the proposed method for noise- and
speaker-independent speech enhancement trained on a large
training set created from the WSJ0 SI-84 dataset. The evalu-
ation results for untrained speakers on untrained babble and
cafeteria are given in Table IV. Again, the proposed framework
produces substantially better STOI and PESQ scores than the
baseline GRN which is 62-layer deep and operates on a whole
utterance. It means that the past and future context are maximal

for the baseline model. Our model operates on a frame of dura-
tion 1024 ms. For this difficult task, the past and future contexts
are very important, as analyzed in [34]. We can increase the
context in our model by increasing the size of the input frame,
but we find that the performance does not improve further by
increasing the frame size. One explanation for our better perfor-
mance is that the GRN model uses the mixture phase whereas
our model learns the phase itself, which we have shown is better
than the mixture phase.

VII. CONCLUDING REMARKS

In this paper, we have proposed a novel approach to train a
fully convolutional neural network for speech enhancement in
the time domain. The key idea is to use a frequency domain loss
to train the CNN. We have investigated different types of loss
function in the frequency domain. Our main observation is that
frequency domain loss is better than a time domain loss. Using a
frequency domain loss helps to improve objective quality and in-
telligibility. The highest improvement is obtained using an MAE
loss computed on STFT magnitudes defined using L1 norm. The
best SI-SDR score is achieved using a loss on the real and imag-
inary part of STFT. We have evaluated our method for speech
enhancement in speaker-dependent but noise-independent, and
speaker- and noise-independent scenarios. In all the cases, the
proposed method substantially outperforms the current state-of-
the-art methods.

Other frequency domain losses do not perform as well as an
STFT magnitude loss. This might be due to better structure in the
STFT magnitude. We also observe that there is clear structure
in the absolute of the real and imaginary part of the STFT.
Training a model with a loss on the absolute value of the real
and imaginary part of the STFT gives comparable performance
to the STFT magnitude based loss.

We have also tried to make the real and imaginary part of
STFT bounded or squashed with a Tanh or sigmoidal function,
but not much improvement is obtained. Also, one might think
that the logarithm of STFT magnitude should perform better,
but that is not what we observe, probably because of a log
operation involved in the training process. We also find that
the performance of the proposed framework drops significantly
when input and output lengths are reduced to one frame from
four frames. Future research needs to develop methods for real-
time implementation with comparable performance.

Although trained with a loss on only the STFT magnitudes,
the proposed framework learns a phase structure itself as it
generates a signal in the time domain. We find that learned
phase is better than mixture phase but not as good as clean
phase. A future research direction is to explore ways to train a
deep model to improve phase estimation.
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